Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of Alling p. 185. (Contributed by Scott Fenton, 30-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nocvxmin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn | |
|
2 | bdayrn | |
|
3 | 1 2 | sseqtri | |
4 | bdaydm | |
|
5 | 4 | sseq2i | |
6 | bdayfun | |
|
7 | funfvima2 | |
|
8 | 6 7 | mpan | |
9 | 5 8 | sylbir | |
10 | elex2 | |
|
11 | 9 10 | syl6 | |
12 | 11 | exlimdv | |
13 | n0 | |
|
14 | n0 | |
|
15 | 12 13 14 | 3imtr4g | |
16 | 15 | impcom | |
17 | onint | |
|
18 | 3 16 17 | sylancr | |
19 | bdayfn | |
|
20 | fvelimab | |
|
21 | 19 20 | mpan | |
22 | 21 | adantl | |
23 | 18 22 | mpbid | |
24 | 23 | 3adant3 | |
25 | ssel | |
|
26 | ssel | |
|
27 | 25 26 | anim12d | |
28 | 27 | imp | |
29 | 28 | ad2ant2r | |
30 | nocvxminlem | |
|
31 | 30 | imp | |
32 | ancom | |
|
33 | ancom | |
|
34 | 32 33 | anbi12i | |
35 | nocvxminlem | |
|
36 | 34 35 | biimtrid | |
37 | 36 | imp | |
38 | slttrieq2 | |
|
39 | 38 | biimpar | |
40 | 29 31 37 39 | syl12anc | |
41 | 40 | exp32 | |
42 | 41 | ralrimivv | |
43 | 42 | 3adant1 | |
44 | fveqeq2 | |
|
45 | 44 | reu4 | |
46 | 24 43 45 | sylanbrc | |