Metamath Proof Explorer


Theorem nocvxmin

Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of Alling p. 185. (Contributed by Scott Fenton, 30-Jun-2011)

Ref Expression
Assertion nocvxmin AANoxAyAzNox<szz<syzA∃!wAbdayw=bdayA

Proof

Step Hyp Ref Expression
1 imassrn bdayAranbday
2 bdayrn ranbday=On
3 1 2 sseqtri bdayAOn
4 bdaydm dombday=No
5 4 sseq2i AdombdayANo
6 bdayfun Funbday
7 funfvima2 FunbdayAdombdayxAbdayxbdayA
8 6 7 mpan AdombdayxAbdayxbdayA
9 5 8 sylbir ANoxAbdayxbdayA
10 elex2 bdayxbdayAwwbdayA
11 9 10 syl6 ANoxAwwbdayA
12 11 exlimdv ANoxxAwwbdayA
13 n0 AxxA
14 n0 bdayAwwbdayA
15 12 13 14 3imtr4g ANoAbdayA
16 15 impcom AANobdayA
17 onint bdayAOnbdayAbdayAbdayA
18 3 16 17 sylancr AANobdayAbdayA
19 bdayfn bdayFnNo
20 fvelimab bdayFnNoANobdayAbdayAwAbdayw=bdayA
21 19 20 mpan ANobdayAbdayAwAbdayw=bdayA
22 21 adantl AANobdayAbdayAwAbdayw=bdayA
23 18 22 mpbid AANowAbdayw=bdayA
24 23 3adant3 AANoxAyAzNox<szz<syzAwAbdayw=bdayA
25 ssel ANowAwNo
26 ssel ANotAtNo
27 25 26 anim12d ANowAtAwNotNo
28 27 imp ANowAtAwNotNo
29 28 ad2ant2r ANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayAwNotNo
30 nocvxminlem ANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayA¬w<st
31 30 imp ANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayA¬w<st
32 ancom wAtAtAwA
33 ancom bdayw=bdayAbdayt=bdayAbdayt=bdayAbdayw=bdayA
34 32 33 anbi12i wAtAbdayw=bdayAbdayt=bdayAtAwAbdayt=bdayAbdayw=bdayA
35 nocvxminlem ANoxAyAzNox<szz<syzAtAwAbdayt=bdayAbdayw=bdayA¬t<sw
36 34 35 biimtrid ANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayA¬t<sw
37 36 imp ANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayA¬t<sw
38 slttrieq2 wNotNow=t¬w<st¬t<sw
39 38 biimpar wNotNo¬w<st¬t<sww=t
40 29 31 37 39 syl12anc ANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayAw=t
41 40 exp32 ANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayAw=t
42 41 ralrimivv ANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayAw=t
43 42 3adant1 AANoxAyAzNox<szz<syzAwAtAbdayw=bdayAbdayt=bdayAw=t
44 fveqeq2 w=tbdayw=bdayAbdayt=bdayA
45 44 reu4 ∃!wAbdayw=bdayAwAbdayw=bdayAwAtAbdayw=bdayAbdayt=bdayAw=t
46 24 43 45 sylanbrc AANoxAyAzNox<szz<syzA∃!wAbdayw=bdayA