Metamath Proof Explorer


Theorem oldbday

Description: A surreal is part of the set older than ordinal A iff its birthday is less than A . Remark in Conway p. 29. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion oldbday ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ( 𝑋 ∈ ( O ‘ 𝐴 ) ↔ ( bday 𝑋 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 oldbdayim ( ( 𝐴 ∈ On ∧ 𝑋 ∈ ( O ‘ 𝐴 ) ) → ( bday 𝑋 ) ∈ 𝐴 )
2 1 ex ( 𝐴 ∈ On → ( 𝑋 ∈ ( O ‘ 𝐴 ) → ( bday 𝑋 ) ∈ 𝐴 ) )
3 2 adantr ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ( 𝑋 ∈ ( O ‘ 𝐴 ) → ( bday 𝑋 ) ∈ 𝐴 ) )
4 simpl ( ( 𝐴 ∈ On ∧ 𝑋 No ) → 𝐴 ∈ On )
5 onelon ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) → 𝑏 ∈ On )
6 madebday ( ( 𝑏 ∈ On ∧ 𝑦 No ) → ( 𝑦 ∈ ( M ‘ 𝑏 ) ↔ ( bday 𝑦 ) ⊆ 𝑏 ) )
7 6 biimprd ( ( 𝑏 ∈ On ∧ 𝑦 No ) → ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
8 5 7 sylan ( ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) ∧ 𝑦 No ) → ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
9 8 anasss ( ( 𝐴 ∈ On ∧ ( 𝑏𝐴𝑦 No ) ) → ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
10 9 ralrimivva ( 𝐴 ∈ On → ∀ 𝑏𝐴𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
11 10 adantr ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ∀ 𝑏𝐴𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
12 simpr ( ( 𝐴 ∈ On ∧ 𝑋 No ) → 𝑋 No )
13 madebdaylemold ( ( 𝐴 ∈ On ∧ ∀ 𝑏𝐴𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( ( bday 𝑋 ) ∈ 𝐴𝑋 ∈ ( O ‘ 𝐴 ) ) )
14 4 11 12 13 syl3anc ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ( ( bday 𝑋 ) ∈ 𝐴𝑋 ∈ ( O ‘ 𝐴 ) ) )
15 3 14 impbid ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ( 𝑋 ∈ ( O ‘ 𝐴 ) ↔ ( bday 𝑋 ) ∈ 𝐴 ) )