Step |
Hyp |
Ref |
Expression |
1 |
|
oldbdayim |
⊢ ( 𝑋 ∈ ( O ‘ 𝐴 ) → ( bday ‘ 𝑋 ) ∈ 𝐴 ) |
2 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → 𝐴 ∈ On ) |
3 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ On ) |
4 |
|
madebday |
⊢ ( ( 𝑏 ∈ On ∧ 𝑦 ∈ No ) → ( 𝑦 ∈ ( M ‘ 𝑏 ) ↔ ( bday ‘ 𝑦 ) ⊆ 𝑏 ) ) |
5 |
4
|
biimprd |
⊢ ( ( 𝑏 ∈ On ∧ 𝑦 ∈ No ) → ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ) |
6 |
3 5
|
sylan |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑦 ∈ No ) → ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ) |
7 |
6
|
anasss |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑦 ∈ No ) ) → ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ) |
8 |
7
|
ralrimivva |
⊢ ( 𝐴 ∈ On → ∀ 𝑏 ∈ 𝐴 ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ∀ 𝑏 ∈ 𝐴 ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → 𝑋 ∈ No ) |
11 |
|
madebdaylemold |
⊢ ( ( 𝐴 ∈ On ∧ ∀ 𝑏 ∈ 𝐴 ∀ 𝑦 ∈ No ( ( bday ‘ 𝑦 ) ⊆ 𝑏 → 𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 ∈ No ) → ( ( bday ‘ 𝑋 ) ∈ 𝐴 → 𝑋 ∈ ( O ‘ 𝐴 ) ) ) |
12 |
2 9 10 11
|
syl3anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( ( bday ‘ 𝑋 ) ∈ 𝐴 → 𝑋 ∈ ( O ‘ 𝐴 ) ) ) |
13 |
1 12
|
impbid2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ No ) → ( 𝑋 ∈ ( O ‘ 𝐴 ) ↔ ( bday ‘ 𝑋 ) ∈ 𝐴 ) ) |