Metamath Proof Explorer


Theorem oldbday

Description: A surreal is part of the set older than ordinal A iff its birthday is less than A . Remark in Conway p. 29. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion oldbday ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ( 𝑋 ∈ ( O ‘ 𝐴 ) ↔ ( bday 𝑋 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 oldbdayim ( 𝑋 ∈ ( O ‘ 𝐴 ) → ( bday 𝑋 ) ∈ 𝐴 )
2 simpl ( ( 𝐴 ∈ On ∧ 𝑋 No ) → 𝐴 ∈ On )
3 onelon ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) → 𝑏 ∈ On )
4 madebday ( ( 𝑏 ∈ On ∧ 𝑦 No ) → ( 𝑦 ∈ ( M ‘ 𝑏 ) ↔ ( bday 𝑦 ) ⊆ 𝑏 ) )
5 4 biimprd ( ( 𝑏 ∈ On ∧ 𝑦 No ) → ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
6 3 5 sylan ( ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) ∧ 𝑦 No ) → ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
7 6 anasss ( ( 𝐴 ∈ On ∧ ( 𝑏𝐴𝑦 No ) ) → ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
8 7 ralrimivva ( 𝐴 ∈ On → ∀ 𝑏𝐴𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
9 8 adantr ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ∀ 𝑏𝐴𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) )
10 simpr ( ( 𝐴 ∈ On ∧ 𝑋 No ) → 𝑋 No )
11 madebdaylemold ( ( 𝐴 ∈ On ∧ ∀ 𝑏𝐴𝑦 No ( ( bday 𝑦 ) ⊆ 𝑏𝑦 ∈ ( M ‘ 𝑏 ) ) ∧ 𝑋 No ) → ( ( bday 𝑋 ) ∈ 𝐴𝑋 ∈ ( O ‘ 𝐴 ) ) )
12 2 9 10 11 syl3anc ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ( ( bday 𝑋 ) ∈ 𝐴𝑋 ∈ ( O ‘ 𝐴 ) ) )
13 1 12 impbid2 ( ( 𝐴 ∈ On ∧ 𝑋 No ) → ( 𝑋 ∈ ( O ‘ 𝐴 ) ↔ ( bday 𝑋 ) ∈ 𝐴 ) )