Metamath Proof Explorer


Theorem oldbdayim

Description: If X is in the old set for A , then the birthday of X is less than A . (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion oldbdayim ( ( 𝐴 ∈ On ∧ 𝑋 ∈ ( O ‘ 𝐴 ) ) → ( bday 𝑋 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 elold ( 𝐴 ∈ On → ( 𝑋 ∈ ( O ‘ 𝐴 ) ↔ ∃ 𝑏𝐴 𝑋 ∈ ( M ‘ 𝑏 ) ) )
2 onelon ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) → 𝑏 ∈ On )
3 2 adantrr ( ( 𝐴 ∈ On ∧ ( 𝑏𝐴𝑋 ∈ ( M ‘ 𝑏 ) ) ) → 𝑏 ∈ On )
4 simprr ( ( 𝐴 ∈ On ∧ ( 𝑏𝐴𝑋 ∈ ( M ‘ 𝑏 ) ) ) → 𝑋 ∈ ( M ‘ 𝑏 ) )
5 madebdayim ( ( 𝑏 ∈ On ∧ 𝑋 ∈ ( M ‘ 𝑏 ) ) → ( bday 𝑋 ) ⊆ 𝑏 )
6 3 4 5 syl2anc ( ( 𝐴 ∈ On ∧ ( 𝑏𝐴𝑋 ∈ ( M ‘ 𝑏 ) ) ) → ( bday 𝑋 ) ⊆ 𝑏 )
7 simprl ( ( 𝐴 ∈ On ∧ ( 𝑏𝐴𝑋 ∈ ( M ‘ 𝑏 ) ) ) → 𝑏𝐴 )
8 bdayelon ( bday 𝑋 ) ∈ On
9 ontr2 ( ( ( bday 𝑋 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( ( bday 𝑋 ) ⊆ 𝑏𝑏𝐴 ) → ( bday 𝑋 ) ∈ 𝐴 ) )
10 8 9 mpan ( 𝐴 ∈ On → ( ( ( bday 𝑋 ) ⊆ 𝑏𝑏𝐴 ) → ( bday 𝑋 ) ∈ 𝐴 ) )
11 10 adantr ( ( 𝐴 ∈ On ∧ ( 𝑏𝐴𝑋 ∈ ( M ‘ 𝑏 ) ) ) → ( ( ( bday 𝑋 ) ⊆ 𝑏𝑏𝐴 ) → ( bday 𝑋 ) ∈ 𝐴 ) )
12 6 7 11 mp2and ( ( 𝐴 ∈ On ∧ ( 𝑏𝐴𝑋 ∈ ( M ‘ 𝑏 ) ) ) → ( bday 𝑋 ) ∈ 𝐴 )
13 12 rexlimdvaa ( 𝐴 ∈ On → ( ∃ 𝑏𝐴 𝑋 ∈ ( M ‘ 𝑏 ) → ( bday 𝑋 ) ∈ 𝐴 ) )
14 1 13 sylbid ( 𝐴 ∈ On → ( 𝑋 ∈ ( O ‘ 𝐴 ) → ( bday 𝑋 ) ∈ 𝐴 ) )
15 14 imp ( ( 𝐴 ∈ On ∧ 𝑋 ∈ ( O ‘ 𝐴 ) ) → ( bday 𝑋 ) ∈ 𝐴 )