Metamath Proof Explorer


Theorem oldbdayim

Description: If X is in the old set for A , then the birthday of X is less than A . (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion oldbdayim
|- ( ( A e. On /\ X e. ( _Old ` A ) ) -> ( bday ` X ) e. A )

Proof

Step Hyp Ref Expression
1 elold
 |-  ( A e. On -> ( X e. ( _Old ` A ) <-> E. b e. A X e. ( _M ` b ) ) )
2 onelon
 |-  ( ( A e. On /\ b e. A ) -> b e. On )
3 2 adantrr
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> b e. On )
4 simprr
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> X e. ( _M ` b ) )
5 madebdayim
 |-  ( ( b e. On /\ X e. ( _M ` b ) ) -> ( bday ` X ) C_ b )
6 3 4 5 syl2anc
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( bday ` X ) C_ b )
7 simprl
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> b e. A )
8 bdayelon
 |-  ( bday ` X ) e. On
9 ontr2
 |-  ( ( ( bday ` X ) e. On /\ A e. On ) -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) )
10 8 9 mpan
 |-  ( A e. On -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) )
11 10 adantr
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) )
12 6 7 11 mp2and
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( bday ` X ) e. A )
13 12 rexlimdvaa
 |-  ( A e. On -> ( E. b e. A X e. ( _M ` b ) -> ( bday ` X ) e. A ) )
14 1 13 sylbid
 |-  ( A e. On -> ( X e. ( _Old ` A ) -> ( bday ` X ) e. A ) )
15 14 imp
 |-  ( ( A e. On /\ X e. ( _Old ` A ) ) -> ( bday ` X ) e. A )