Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
|- ( X e. ( _Old ` A ) -> A e. dom _Old ) |
2 |
|
oldf |
|- _Old : On --> ~P No |
3 |
2
|
fdmi |
|- dom _Old = On |
4 |
1 3
|
eleqtrdi |
|- ( X e. ( _Old ` A ) -> A e. On ) |
5 |
|
elold |
|- ( A e. On -> ( X e. ( _Old ` A ) <-> E. b e. A X e. ( _M ` b ) ) ) |
6 |
|
madebdayim |
|- ( X e. ( _M ` b ) -> ( bday ` X ) C_ b ) |
7 |
6
|
ad2antll |
|- ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( bday ` X ) C_ b ) |
8 |
|
simprl |
|- ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> b e. A ) |
9 |
|
bdayelon |
|- ( bday ` X ) e. On |
10 |
|
ontr2 |
|- ( ( ( bday ` X ) e. On /\ A e. On ) -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) ) |
11 |
9 10
|
mpan |
|- ( A e. On -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) ) |
12 |
11
|
adantr |
|- ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) ) |
13 |
7 8 12
|
mp2and |
|- ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( bday ` X ) e. A ) |
14 |
13
|
rexlimdvaa |
|- ( A e. On -> ( E. b e. A X e. ( _M ` b ) -> ( bday ` X ) e. A ) ) |
15 |
5 14
|
sylbid |
|- ( A e. On -> ( X e. ( _Old ` A ) -> ( bday ` X ) e. A ) ) |
16 |
4 15
|
mpcom |
|- ( X e. ( _Old ` A ) -> ( bday ` X ) e. A ) |