Metamath Proof Explorer


Theorem oldbdayim

Description: If X is in the old set for A , then the birthday of X is less than A . (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion oldbdayim
|- ( X e. ( _Old ` A ) -> ( bday ` X ) e. A )

Proof

Step Hyp Ref Expression
1 elfvdm
 |-  ( X e. ( _Old ` A ) -> A e. dom _Old )
2 oldf
 |-  _Old : On --> ~P No
3 2 fdmi
 |-  dom _Old = On
4 1 3 eleqtrdi
 |-  ( X e. ( _Old ` A ) -> A e. On )
5 elold
 |-  ( A e. On -> ( X e. ( _Old ` A ) <-> E. b e. A X e. ( _M ` b ) ) )
6 madebdayim
 |-  ( X e. ( _M ` b ) -> ( bday ` X ) C_ b )
7 6 ad2antll
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( bday ` X ) C_ b )
8 simprl
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> b e. A )
9 bdayelon
 |-  ( bday ` X ) e. On
10 ontr2
 |-  ( ( ( bday ` X ) e. On /\ A e. On ) -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) )
11 9 10 mpan
 |-  ( A e. On -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) )
12 11 adantr
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) )
13 7 8 12 mp2and
 |-  ( ( A e. On /\ ( b e. A /\ X e. ( _M ` b ) ) ) -> ( bday ` X ) e. A )
14 13 rexlimdvaa
 |-  ( A e. On -> ( E. b e. A X e. ( _M ` b ) -> ( bday ` X ) e. A ) )
15 5 14 sylbid
 |-  ( A e. On -> ( X e. ( _Old ` A ) -> ( bday ` X ) e. A ) )
16 4 15 mpcom
 |-  ( X e. ( _Old ` A ) -> ( bday ` X ) e. A )