Metamath Proof Explorer


Theorem madebdayim

Description: If a surreal is a member of a made set, its birthday is less than or equal to the level. (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion madebdayim ( ( 𝐴 ∈ On ∧ 𝑋 ∈ ( M ‘ 𝐴 ) ) → ( bday 𝑋 ) ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑎 = 𝑏 → ( M ‘ 𝑎 ) = ( M ‘ 𝑏 ) )
2 sseq2 ( 𝑎 = 𝑏 → ( ( bday 𝑥 ) ⊆ 𝑎 ↔ ( bday 𝑥 ) ⊆ 𝑏 ) )
3 1 2 raleqbidv ( 𝑎 = 𝑏 → ( ∀ 𝑥 ∈ ( M ‘ 𝑎 ) ( bday 𝑥 ) ⊆ 𝑎 ↔ ∀ 𝑥 ∈ ( M ‘ 𝑏 ) ( bday 𝑥 ) ⊆ 𝑏 ) )
4 fveq2 ( 𝑥 = 𝑦 → ( bday 𝑥 ) = ( bday 𝑦 ) )
5 4 sseq1d ( 𝑥 = 𝑦 → ( ( bday 𝑥 ) ⊆ 𝑏 ↔ ( bday 𝑦 ) ⊆ 𝑏 ) )
6 5 cbvralvw ( ∀ 𝑥 ∈ ( M ‘ 𝑏 ) ( bday 𝑥 ) ⊆ 𝑏 ↔ ∀ 𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 )
7 3 6 bitrdi ( 𝑎 = 𝑏 → ( ∀ 𝑥 ∈ ( M ‘ 𝑎 ) ( bday 𝑥 ) ⊆ 𝑎 ↔ ∀ 𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) )
8 fveq2 ( 𝑎 = 𝐴 → ( M ‘ 𝑎 ) = ( M ‘ 𝐴 ) )
9 sseq2 ( 𝑎 = 𝐴 → ( ( bday 𝑥 ) ⊆ 𝑎 ↔ ( bday 𝑥 ) ⊆ 𝐴 ) )
10 8 9 raleqbidv ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ ( M ‘ 𝑎 ) ( bday 𝑥 ) ⊆ 𝑎 ↔ ∀ 𝑥 ∈ ( M ‘ 𝐴 ) ( bday 𝑥 ) ⊆ 𝐴 ) )
11 elmade2 ( 𝑎 ∈ On → ( 𝑥 ∈ ( M ‘ 𝑎 ) ↔ ∃ 𝑙 ∈ 𝒫 ( O ‘ 𝑎 ) ∃ 𝑟 ∈ 𝒫 ( O ‘ 𝑎 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
12 11 adantr ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( 𝑥 ∈ ( M ‘ 𝑎 ) ↔ ∃ 𝑙 ∈ 𝒫 ( O ‘ 𝑎 ) ∃ 𝑟 ∈ 𝒫 ( O ‘ 𝑎 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
13 pwuncl ( ( 𝑙 ∈ 𝒫 ( O ‘ 𝑎 ) ∧ 𝑟 ∈ 𝒫 ( O ‘ 𝑎 ) ) → ( 𝑙𝑟 ) ∈ 𝒫 ( O ‘ 𝑎 ) )
14 13 elpwid ( ( 𝑙 ∈ 𝒫 ( O ‘ 𝑎 ) ∧ 𝑟 ∈ 𝒫 ( O ‘ 𝑎 ) ) → ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) )
15 simprr ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → 𝑙 <<s 𝑟 )
16 simpll ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → 𝑎 ∈ On )
17 dfss3 ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ↔ ∀ 𝑧 ∈ ( 𝑙𝑟 ) 𝑧 ∈ ( O ‘ 𝑎 ) )
18 fveq2 ( 𝑦 = 𝑧 → ( bday 𝑦 ) = ( bday 𝑧 ) )
19 18 sseq1d ( 𝑦 = 𝑧 → ( ( bday 𝑦 ) ⊆ 𝑏 ↔ ( bday 𝑧 ) ⊆ 𝑏 ) )
20 19 rspccv ( ∀ 𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 → ( 𝑧 ∈ ( M ‘ 𝑏 ) → ( bday 𝑧 ) ⊆ 𝑏 ) )
21 20 ralimi ( ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 → ∀ 𝑏𝑎 ( 𝑧 ∈ ( M ‘ 𝑏 ) → ( bday 𝑧 ) ⊆ 𝑏 ) )
22 rexim ( ∀ 𝑏𝑎 ( 𝑧 ∈ ( M ‘ 𝑏 ) → ( bday 𝑧 ) ⊆ 𝑏 ) → ( ∃ 𝑏𝑎 𝑧 ∈ ( M ‘ 𝑏 ) → ∃ 𝑏𝑎 ( bday 𝑧 ) ⊆ 𝑏 ) )
23 21 22 syl ( ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 → ( ∃ 𝑏𝑎 𝑧 ∈ ( M ‘ 𝑏 ) → ∃ 𝑏𝑎 ( bday 𝑧 ) ⊆ 𝑏 ) )
24 23 adantl ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( ∃ 𝑏𝑎 𝑧 ∈ ( M ‘ 𝑏 ) → ∃ 𝑏𝑎 ( bday 𝑧 ) ⊆ 𝑏 ) )
25 elold ( 𝑎 ∈ On → ( 𝑧 ∈ ( O ‘ 𝑎 ) ↔ ∃ 𝑏𝑎 𝑧 ∈ ( M ‘ 𝑏 ) ) )
26 25 adantr ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( 𝑧 ∈ ( O ‘ 𝑎 ) ↔ ∃ 𝑏𝑎 𝑧 ∈ ( M ‘ 𝑏 ) ) )
27 bdayelon ( bday 𝑧 ) ∈ On
28 onelssex ( ( ( bday 𝑧 ) ∈ On ∧ 𝑎 ∈ On ) → ( ( bday 𝑧 ) ∈ 𝑎 ↔ ∃ 𝑏𝑎 ( bday 𝑧 ) ⊆ 𝑏 ) )
29 27 28 mpan ( 𝑎 ∈ On → ( ( bday 𝑧 ) ∈ 𝑎 ↔ ∃ 𝑏𝑎 ( bday 𝑧 ) ⊆ 𝑏 ) )
30 29 adantr ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( ( bday 𝑧 ) ∈ 𝑎 ↔ ∃ 𝑏𝑎 ( bday 𝑧 ) ⊆ 𝑏 ) )
31 24 26 30 3imtr4d ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( 𝑧 ∈ ( O ‘ 𝑎 ) → ( bday 𝑧 ) ∈ 𝑎 ) )
32 31 ralimdv ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( ∀ 𝑧 ∈ ( 𝑙𝑟 ) 𝑧 ∈ ( O ‘ 𝑎 ) → ∀ 𝑧 ∈ ( 𝑙𝑟 ) ( bday 𝑧 ) ∈ 𝑎 ) )
33 17 32 syl5bi ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) → ∀ 𝑧 ∈ ( 𝑙𝑟 ) ( bday 𝑧 ) ∈ 𝑎 ) )
34 33 imp ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ) → ∀ 𝑧 ∈ ( 𝑙𝑟 ) ( bday 𝑧 ) ∈ 𝑎 )
35 34 adantrr ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → ∀ 𝑧 ∈ ( 𝑙𝑟 ) ( bday 𝑧 ) ∈ 𝑎 )
36 bdayfun Fun bday
37 ssltss1 ( 𝑙 <<s 𝑟𝑙 No )
38 ssltss2 ( 𝑙 <<s 𝑟𝑟 No )
39 37 38 unssd ( 𝑙 <<s 𝑟 → ( 𝑙𝑟 ) ⊆ No )
40 39 adantl ( ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) → ( 𝑙𝑟 ) ⊆ No )
41 40 adantl ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → ( 𝑙𝑟 ) ⊆ No )
42 bdaydm dom bday = No
43 41 42 sseqtrrdi ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → ( 𝑙𝑟 ) ⊆ dom bday )
44 funimass4 ( ( Fun bday ∧ ( 𝑙𝑟 ) ⊆ dom bday ) → ( ( bday “ ( 𝑙𝑟 ) ) ⊆ 𝑎 ↔ ∀ 𝑧 ∈ ( 𝑙𝑟 ) ( bday 𝑧 ) ∈ 𝑎 ) )
45 36 43 44 sylancr ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → ( ( bday “ ( 𝑙𝑟 ) ) ⊆ 𝑎 ↔ ∀ 𝑧 ∈ ( 𝑙𝑟 ) ( bday 𝑧 ) ∈ 𝑎 ) )
46 35 45 mpbird ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → ( bday “ ( 𝑙𝑟 ) ) ⊆ 𝑎 )
47 scutbdaybnd ( ( 𝑙 <<s 𝑟𝑎 ∈ On ∧ ( bday “ ( 𝑙𝑟 ) ) ⊆ 𝑎 ) → ( bday ‘ ( 𝑙 |s 𝑟 ) ) ⊆ 𝑎 )
48 15 16 46 47 syl3anc ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → ( bday ‘ ( 𝑙 |s 𝑟 ) ) ⊆ 𝑎 )
49 fveq2 ( ( 𝑙 |s 𝑟 ) = 𝑥 → ( bday ‘ ( 𝑙 |s 𝑟 ) ) = ( bday 𝑥 ) )
50 49 sseq1d ( ( 𝑙 |s 𝑟 ) = 𝑥 → ( ( bday ‘ ( 𝑙 |s 𝑟 ) ) ⊆ 𝑎 ↔ ( bday 𝑥 ) ⊆ 𝑎 ) )
51 48 50 syl5ibcom ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ∧ 𝑙 <<s 𝑟 ) ) → ( ( 𝑙 |s 𝑟 ) = 𝑥 → ( bday 𝑥 ) ⊆ 𝑎 ) )
52 51 expr ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ) → ( 𝑙 <<s 𝑟 → ( ( 𝑙 |s 𝑟 ) = 𝑥 → ( bday 𝑥 ) ⊆ 𝑎 ) ) )
53 52 impd ( ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) ∧ ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) ) → ( ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ( bday 𝑥 ) ⊆ 𝑎 ) )
54 53 ex ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( ( 𝑙𝑟 ) ⊆ ( O ‘ 𝑎 ) → ( ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ( bday 𝑥 ) ⊆ 𝑎 ) ) )
55 14 54 syl5 ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( ( 𝑙 ∈ 𝒫 ( O ‘ 𝑎 ) ∧ 𝑟 ∈ 𝒫 ( O ‘ 𝑎 ) ) → ( ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ( bday 𝑥 ) ⊆ 𝑎 ) ) )
56 55 rexlimdvv ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( ∃ 𝑙 ∈ 𝒫 ( O ‘ 𝑎 ) ∃ 𝑟 ∈ 𝒫 ( O ‘ 𝑎 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ( bday 𝑥 ) ⊆ 𝑎 ) )
57 12 56 sylbid ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ( 𝑥 ∈ ( M ‘ 𝑎 ) → ( bday 𝑥 ) ⊆ 𝑎 ) )
58 57 ralrimiv ( ( 𝑎 ∈ On ∧ ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 ) → ∀ 𝑥 ∈ ( M ‘ 𝑎 ) ( bday 𝑥 ) ⊆ 𝑎 )
59 58 ex ( 𝑎 ∈ On → ( ∀ 𝑏𝑎𝑦 ∈ ( M ‘ 𝑏 ) ( bday 𝑦 ) ⊆ 𝑏 → ∀ 𝑥 ∈ ( M ‘ 𝑎 ) ( bday 𝑥 ) ⊆ 𝑎 ) )
60 7 10 59 tfis3 ( 𝐴 ∈ On → ∀ 𝑥 ∈ ( M ‘ 𝐴 ) ( bday 𝑥 ) ⊆ 𝐴 )
61 fveq2 ( 𝑥 = 𝑋 → ( bday 𝑥 ) = ( bday 𝑋 ) )
62 61 sseq1d ( 𝑥 = 𝑋 → ( ( bday 𝑥 ) ⊆ 𝐴 ↔ ( bday 𝑋 ) ⊆ 𝐴 ) )
63 62 rspccva ( ( ∀ 𝑥 ∈ ( M ‘ 𝐴 ) ( bday 𝑥 ) ⊆ 𝐴𝑋 ∈ ( M ‘ 𝐴 ) ) → ( bday 𝑋 ) ⊆ 𝐴 )
64 60 63 sylan ( ( 𝐴 ∈ On ∧ 𝑋 ∈ ( M ‘ 𝐴 ) ) → ( bday 𝑋 ) ⊆ 𝐴 )