Metamath Proof Explorer


Theorem oldssno

Description: Old sets are surreals. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion oldssno ( O ‘ 𝐴 ) ⊆ No

Proof

Step Hyp Ref Expression
1 oldf O : On ⟶ 𝒫 No
2 0elpw ∅ ∈ 𝒫 No
3 1 2 f0cli ( O ‘ 𝐴 ) ∈ 𝒫 No
4 elpwi ( ( O ‘ 𝐴 ) ∈ 𝒫 No → ( O ‘ 𝐴 ) ⊆ No )
5 3 4 ax-mp ( O ‘ 𝐴 ) ⊆ No