Metamath Proof Explorer


Theorem onelssex

Description: Ordinal less than is equivalent to having an ordinal between them. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion onelssex ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐶 ↔ ∃ 𝑏𝐶 𝐴𝑏 ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐴𝐴
2 sseq2 ( 𝑏 = 𝐴 → ( 𝐴𝑏𝐴𝐴 ) )
3 2 rspcev ( ( 𝐴𝐶𝐴𝐴 ) → ∃ 𝑏𝐶 𝐴𝑏 )
4 1 3 mpan2 ( 𝐴𝐶 → ∃ 𝑏𝐶 𝐴𝑏 )
5 ontr2 ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴𝑏𝑏𝐶 ) → 𝐴𝐶 ) )
6 5 expcomd ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝑏𝐶 → ( 𝐴𝑏𝐴𝐶 ) ) )
7 6 rexlimdv ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∃ 𝑏𝐶 𝐴𝑏𝐴𝐶 ) )
8 4 7 impbid2 ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐶 ↔ ∃ 𝑏𝐶 𝐴𝑏 ) )