Metamath Proof Explorer


Theorem oldbday

Description: A surreal is part of the set older than ordinal A iff its birthday is less than A . Remark in Conway p. 29. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion oldbday AOnXNoXOldAbdayXA

Proof

Step Hyp Ref Expression
1 oldbdayim XOldAbdayXA
2 simpl AOnXNoAOn
3 onelon AOnbAbOn
4 madebday Could not format ( ( b e. On /\ y e. No ) -> ( y e. ( _Made ` b ) <-> ( bday ` y ) C_ b ) ) : No typesetting found for |- ( ( b e. On /\ y e. No ) -> ( y e. ( _Made ` b ) <-> ( bday ` y ) C_ b ) ) with typecode |-
5 4 biimprd Could not format ( ( b e. On /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) : No typesetting found for |- ( ( b e. On /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) with typecode |-
6 3 5 sylan Could not format ( ( ( A e. On /\ b e. A ) /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) : No typesetting found for |- ( ( ( A e. On /\ b e. A ) /\ y e. No ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) with typecode |-
7 6 anasss Could not format ( ( A e. On /\ ( b e. A /\ y e. No ) ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) : No typesetting found for |- ( ( A e. On /\ ( b e. A /\ y e. No ) ) -> ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) with typecode |-
8 7 ralrimivva Could not format ( A e. On -> A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) : No typesetting found for |- ( A e. On -> A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) with typecode |-
9 8 adantr Could not format ( ( A e. On /\ X e. No ) -> A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) : No typesetting found for |- ( ( A e. On /\ X e. No ) -> A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) ) with typecode |-
10 simpr AOnXNoXNo
11 madebdaylemold Could not format ( ( A e. On /\ A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) /\ X e. No ) -> ( ( bday ` X ) e. A -> X e. ( _Old ` A ) ) ) : No typesetting found for |- ( ( A e. On /\ A. b e. A A. y e. No ( ( bday ` y ) C_ b -> y e. ( _Made ` b ) ) /\ X e. No ) -> ( ( bday ` X ) e. A -> X e. ( _Old ` A ) ) ) with typecode |-
12 2 9 10 11 syl3anc AOnXNobdayXAXOldA
13 1 12 impbid2 AOnXNoXOldAbdayXA