Metamath Proof Explorer


Theorem madebdaylemold

Description: Lemma for madebday . If the inductive hypothesis of madebday is satisfied, the converse of oldbdayim holds. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion madebdaylemold A On b A y No bday y b y M b X No bday X A X Old A

Proof

Step Hyp Ref Expression
1 fveq2 y = X bday y = bday X
2 1 sseq1d y = X bday y b bday X b
3 eleq1 y = X y M b X M b
4 2 3 imbi12d y = X bday y b y M b bday X b X M b
5 4 rspcv X No y No bday y b y M b bday X b X M b
6 5 ralimdv X No b A y No bday y b y M b b A bday X b X M b
7 6 impcom b A y No bday y b y M b X No b A bday X b X M b
8 rexim b A bday X b X M b b A bday X b b A X M b
9 7 8 syl b A y No bday y b y M b X No b A bday X b b A X M b
10 9 3adant1 A On b A y No bday y b y M b X No b A bday X b b A X M b
11 bdayelon bday X On
12 onelssex bday X On A On bday X A b A bday X b
13 11 12 mpan A On bday X A b A bday X b
14 13 3ad2ant1 A On b A y No bday y b y M b X No bday X A b A bday X b
15 elold A On X Old A b A X M b
16 15 3ad2ant1 A On b A y No bday y b y M b X No X Old A b A X M b
17 10 14 16 3imtr4d A On b A y No bday y b y M b X No bday X A X Old A