Metamath Proof Explorer


Theorem leftssold

Description: The left options are a subset of the old set. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion leftssold ( L ‘ 𝑋 ) ⊆ ( O ‘ ( bday 𝑋 ) )

Proof

Step Hyp Ref Expression
1 leftval ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 }
2 ssrab2 { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ⊆ ( O ‘ ( bday 𝑋 ) )
3 1 2 eqsstri ( L ‘ 𝑋 ) ⊆ ( O ‘ ( bday 𝑋 ) )