Step |
Hyp |
Ref |
Expression |
1 |
|
2fveq3 |
⊢ ( 𝑦 = 𝐴 → ( O ‘ ( bday ‘ 𝑦 ) ) = ( O ‘ ( bday ‘ 𝐴 ) ) ) |
2 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 <s 𝑦 ↔ 𝑥 <s 𝐴 ) ) |
3 |
1 2
|
rabeqbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ∣ 𝑥 <s 𝑦 } = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ) |
4 |
|
df-left |
⊢ L = ( 𝑦 ∈ No ↦ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ∣ 𝑥 <s 𝑦 } ) |
5 |
|
fvex |
⊢ ( O ‘ ( bday ‘ 𝐴 ) ) ∈ V |
6 |
5
|
rabex |
⊢ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ∈ V |
7 |
3 4 6
|
fvmpt |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ) |
8 |
4
|
fvmptndm |
⊢ ( ¬ 𝐴 ∈ No → ( L ‘ 𝐴 ) = ∅ ) |
9 |
|
bdaydm |
⊢ dom bday = No |
10 |
9
|
eleq2i |
⊢ ( 𝐴 ∈ dom bday ↔ 𝐴 ∈ No ) |
11 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom bday → ( bday ‘ 𝐴 ) = ∅ ) |
12 |
10 11
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ No → ( bday ‘ 𝐴 ) = ∅ ) |
13 |
12
|
fveq2d |
⊢ ( ¬ 𝐴 ∈ No → ( O ‘ ( bday ‘ 𝐴 ) ) = ( O ‘ ∅ ) ) |
14 |
|
old0 |
⊢ ( O ‘ ∅ ) = ∅ |
15 |
13 14
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ No → ( O ‘ ( bday ‘ 𝐴 ) ) = ∅ ) |
16 |
15
|
rabeqdv |
⊢ ( ¬ 𝐴 ∈ No → { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } = { 𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴 } ) |
17 |
|
rab0 |
⊢ { 𝑥 ∈ ∅ ∣ 𝑥 <s 𝐴 } = ∅ |
18 |
16 17
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ No → { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } = ∅ ) |
19 |
8 18
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ No → ( L ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ) |
20 |
7 19
|
pm2.61i |
⊢ ( L ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } |