Metamath Proof Explorer


Theorem leftval

Description: The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion leftval
|- ( _L ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x 

Proof

Step Hyp Ref Expression
1 2fveq3
 |-  ( y = A -> ( _Old ` ( bday ` y ) ) = ( _Old ` ( bday ` A ) ) )
2 breq2
 |-  ( y = A -> ( x  x 
3 1 2 rabeqbidv
 |-  ( y = A -> { x e. ( _Old ` ( bday ` y ) ) | x 
4 df-left
 |-  _L = ( y e. No |-> { x e. ( _Old ` ( bday ` y ) ) | x 
5 fvex
 |-  ( _Old ` ( bday ` A ) ) e. _V
6 5 rabex
 |-  { x e. ( _Old ` ( bday ` A ) ) | x 
7 3 4 6 fvmpt
 |-  ( A e. No -> ( _L ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x 
8 4 fvmptndm
 |-  ( -. A e. No -> ( _L ` A ) = (/) )
9 bdaydm
 |-  dom bday = No
10 9 eleq2i
 |-  ( A e. dom bday <-> A e. No )
11 ndmfv
 |-  ( -. A e. dom bday -> ( bday ` A ) = (/) )
12 10 11 sylnbir
 |-  ( -. A e. No -> ( bday ` A ) = (/) )
13 12 fveq2d
 |-  ( -. A e. No -> ( _Old ` ( bday ` A ) ) = ( _Old ` (/) ) )
14 old0
 |-  ( _Old ` (/) ) = (/)
15 13 14 eqtrdi
 |-  ( -. A e. No -> ( _Old ` ( bday ` A ) ) = (/) )
16 15 rabeqdv
 |-  ( -. A e. No -> { x e. ( _Old ` ( bday ` A ) ) | x 
17 rab0
 |-  { x e. (/) | x 
18 16 17 eqtrdi
 |-  ( -. A e. No -> { x e. ( _Old ` ( bday ` A ) ) | x 
19 8 18 eqtr4d
 |-  ( -. A e. No -> ( _L ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x 
20 7 19 pm2.61i
 |-  ( _L ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x