Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltled.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| sltled.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| sltled.3 | ⊢ ( 𝜑 → 𝐴 <s 𝐵 ) | ||
| Assertion | sltled | ⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltled.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | sltled.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | sltled.3 | ⊢ ( 𝜑 → 𝐴 <s 𝐵 ) | |
| 4 | 1 2 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ) |
| 5 | sltasym | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴 ) ) | |
| 6 | 4 3 5 | sylc | ⊢ ( 𝜑 → ¬ 𝐵 <s 𝐴 ) |
| 7 | slenlt | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) | |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
| 9 | 6 8 | mpbird | ⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |