Description: Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sltne | ⊢ ( ( 𝐴 ∈ No ∧ 𝐴 <s 𝐵 ) → 𝐵 ≠ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sltirr | ⊢ ( 𝐴 ∈ No → ¬ 𝐴 <s 𝐴 ) | |
| 2 | breq2 | ⊢ ( 𝐵 = 𝐴 → ( 𝐴 <s 𝐵 ↔ 𝐴 <s 𝐴 ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝐵 = 𝐴 → ( ¬ 𝐴 <s 𝐵 ↔ ¬ 𝐴 <s 𝐴 ) ) | 
| 4 | 1 3 | syl5ibrcom | ⊢ ( 𝐴 ∈ No → ( 𝐵 = 𝐴 → ¬ 𝐴 <s 𝐵 ) ) | 
| 5 | 4 | necon2ad | ⊢ ( 𝐴 ∈ No → ( 𝐴 <s 𝐵 → 𝐵 ≠ 𝐴 ) ) | 
| 6 | 5 | imp | ⊢ ( ( 𝐴 ∈ No ∧ 𝐴 <s 𝐵 ) → 𝐵 ≠ 𝐴 ) |