Metamath Proof Explorer


Theorem sltne

Description: Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion sltne
|- ( ( A e. No /\ A  B =/= A )

Proof

Step Hyp Ref Expression
1 sltirr
 |-  ( A e. No -> -. A 
2 breq2
 |-  ( B = A -> ( A  A 
3 2 notbid
 |-  ( B = A -> ( -. A  -. A 
4 1 3 syl5ibrcom
 |-  ( A e. No -> ( B = A -> -. A 
5 4 necon2ad
 |-  ( A e. No -> ( A  B =/= A ) )
6 5 imp
 |-  ( ( A e. No /\ A  B =/= A )