Metamath Proof Explorer


Theorem sltne

Description: Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion sltne ANoA<sBBA

Proof

Step Hyp Ref Expression
1 sltirr ANo¬A<sA
2 breq2 B=AA<sBA<sA
3 2 notbid B=A¬A<sB¬A<sA
4 1 3 syl5ibrcom ANoB=A¬A<sB
5 4 necon2ad ANoA<sBBA
6 5 imp ANoA<sBBA