| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltlen.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | sltlen.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  <s  𝐵 )  →  𝐴  ∈   No  ) | 
						
							| 4 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  <s  𝐵 )  →  𝐵  ∈   No  ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  <s  𝐵 )  →  𝐴  <s  𝐵 ) | 
						
							| 6 | 3 4 5 | sltled | ⊢ ( ( 𝜑  ∧  𝐴  <s  𝐵 )  →  𝐴  ≤s  𝐵 ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐵  →  𝐴  ≤s  𝐵 ) ) | 
						
							| 8 |  | sltne | ⊢ ( ( 𝐴  ∈   No   ∧  𝐴  <s  𝐵 )  →  𝐵  ≠  𝐴 ) | 
						
							| 9 | 1 8 | sylan | ⊢ ( ( 𝜑  ∧  𝐴  <s  𝐵 )  →  𝐵  ≠  𝐴 ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐵  →  𝐵  ≠  𝐴 ) ) | 
						
							| 11 | 7 10 | jcad | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐵  →  ( 𝐴  ≤s  𝐵  ∧  𝐵  ≠  𝐴 ) ) ) | 
						
							| 12 |  | sleloe | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐴  <s  𝐵  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 13 | 1 2 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐴  <s  𝐵  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 14 |  | eqneqall | ⊢ ( 𝐵  =  𝐴  →  ( 𝐵  ≠  𝐴  →  𝐴  <s  𝐵 ) ) | 
						
							| 15 | 14 | eqcoms | ⊢ ( 𝐴  =  𝐵  →  ( 𝐵  ≠  𝐴  →  𝐴  <s  𝐵 ) ) | 
						
							| 16 | 15 | jao1i | ⊢ ( ( 𝐴  <s  𝐵  ∨  𝐴  =  𝐵 )  →  ( 𝐵  ≠  𝐴  →  𝐴  <s  𝐵 ) ) | 
						
							| 17 | 13 16 | biimtrdi | ⊢ ( 𝜑  →  ( 𝐴  ≤s  𝐵  →  ( 𝐵  ≠  𝐴  →  𝐴  <s  𝐵 ) ) ) | 
						
							| 18 | 17 | impd | ⊢ ( 𝜑  →  ( ( 𝐴  ≤s  𝐵  ∧  𝐵  ≠  𝐴 )  →  𝐴  <s  𝐵 ) ) | 
						
							| 19 | 11 18 | impbid | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐵  ↔  ( 𝐴  ≤s  𝐵  ∧  𝐵  ≠  𝐴 ) ) ) |