| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltlen.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | sltlen.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 | 1 | adantr |  |-  ( ( ph /\ A  A e. No ) | 
						
							| 4 | 2 | adantr |  |-  ( ( ph /\ A  B e. No ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ A  A  | 
						
							| 6 | 3 4 5 | sltled |  |-  ( ( ph /\ A  A <_s B ) | 
						
							| 7 | 6 | ex |  |-  ( ph -> ( A  A <_s B ) ) | 
						
							| 8 |  | sltne |  |-  ( ( A e. No /\ A  B =/= A ) | 
						
							| 9 | 1 8 | sylan |  |-  ( ( ph /\ A  B =/= A ) | 
						
							| 10 | 9 | ex |  |-  ( ph -> ( A  B =/= A ) ) | 
						
							| 11 | 7 10 | jcad |  |-  ( ph -> ( A  ( A <_s B /\ B =/= A ) ) ) | 
						
							| 12 |  | sleloe |  |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( A  | 
						
							| 13 | 1 2 12 | syl2anc |  |-  ( ph -> ( A <_s B <-> ( A  | 
						
							| 14 |  | eqneqall |  |-  ( B = A -> ( B =/= A -> A  | 
						
							| 15 | 14 | eqcoms |  |-  ( A = B -> ( B =/= A -> A  | 
						
							| 16 | 15 | jao1i |  |-  ( ( A  ( B =/= A -> A  | 
						
							| 17 | 13 16 | biimtrdi |  |-  ( ph -> ( A <_s B -> ( B =/= A -> A  | 
						
							| 18 | 17 | impd |  |-  ( ph -> ( ( A <_s B /\ B =/= A ) -> A  | 
						
							| 19 | 11 18 | impbid |  |-  ( ph -> ( A  ( A <_s B /\ B =/= A ) ) ) |