Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltled.1 | |- ( ph -> A e. No ) |
|
sltled.2 | |- ( ph -> B e. No ) |
||
sltled.3 | |- ( ph -> A |
||
Assertion | sltled | |- ( ph -> A <_s B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltled.1 | |- ( ph -> A e. No ) |
|
2 | sltled.2 | |- ( ph -> B e. No ) |
|
3 | sltled.3 | |- ( ph -> A |
|
4 | 1 2 | jca | |- ( ph -> ( A e. No /\ B e. No ) ) |
5 | sltasym | |- ( ( A e. No /\ B e. No ) -> ( A |
|
6 | 4 3 5 | sylc | |- ( ph -> -. B |
7 | slenlt | |- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B |
|
8 | 1 2 7 | syl2anc | |- ( ph -> ( A <_s B <-> -. B |
9 | 6 8 | mpbird | |- ( ph -> A <_s B ) |