Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltled.1 | |- ( ph -> A e. No ) |
|
| sltled.2 | |- ( ph -> B e. No ) |
||
| sltled.3 | |- ( ph -> A |
||
| Assertion | sltled | |- ( ph -> A <_s B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltled.1 | |- ( ph -> A e. No ) |
|
| 2 | sltled.2 | |- ( ph -> B e. No ) |
|
| 3 | sltled.3 | |- ( ph -> A |
|
| 4 | 1 2 | jca | |- ( ph -> ( A e. No /\ B e. No ) ) |
| 5 | sltasym | |- ( ( A e. No /\ B e. No ) -> ( A |
|
| 6 | 4 3 5 | sylc | |- ( ph -> -. B |
| 7 | slenlt | |- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B |
|
| 8 | 1 2 7 | syl2anc | |- ( ph -> ( A <_s B <-> -. B |
| 9 | 6 8 | mpbird | |- ( ph -> A <_s B ) |