Metamath Proof Explorer


Theorem sltled

Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025)

Ref Expression
Hypotheses sltled.1
|- ( ph -> A e. No )
sltled.2
|- ( ph -> B e. No )
sltled.3
|- ( ph -> A 
Assertion sltled
|- ( ph -> A <_s B )

Proof

Step Hyp Ref Expression
1 sltled.1
 |-  ( ph -> A e. No )
2 sltled.2
 |-  ( ph -> B e. No )
3 sltled.3
 |-  ( ph -> A 
4 1 2 jca
 |-  ( ph -> ( A e. No /\ B e. No ) )
5 sltasym
 |-  ( ( A e. No /\ B e. No ) -> ( A  -. B 
6 4 3 5 sylc
 |-  ( ph -> -. B 
7 slenlt
 |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B 
8 1 2 7 syl2anc
 |-  ( ph -> ( A <_s B <-> -. B 
9 6 8 mpbird
 |-  ( ph -> A <_s B )