Step |
Hyp |
Ref |
Expression |
1 |
|
bdayelon |
|- ( bday ` x ) e. On |
2 |
1
|
onordi |
|- Ord ( bday ` x ) |
3 |
|
bdayelon |
|- ( bday ` A ) e. On |
4 |
3
|
onordi |
|- Ord ( bday ` A ) |
5 |
|
ordtri2or |
|- ( ( Ord ( bday ` x ) /\ Ord ( bday ` A ) ) -> ( ( bday ` x ) e. ( bday ` A ) \/ ( bday ` A ) C_ ( bday ` x ) ) ) |
6 |
2 4 5
|
mp2an |
|- ( ( bday ` x ) e. ( bday ` A ) \/ ( bday ` A ) C_ ( bday ` x ) ) |
7 |
6
|
a1i |
|- ( ( A e. No /\ x e. On_s /\ x ( ( bday ` x ) e. ( bday ` A ) \/ ( bday ` A ) C_ ( bday ` x ) ) ) |
8 |
|
madeun |
|- ( _Made ` ( bday ` x ) ) = ( ( _Old ` ( bday ` x ) ) u. ( _New ` ( bday ` x ) ) ) |
9 |
8
|
eleq2i |
|- ( A e. ( _Made ` ( bday ` x ) ) <-> A e. ( ( _Old ` ( bday ` x ) ) u. ( _New ` ( bday ` x ) ) ) ) |
10 |
|
elun |
|- ( A e. ( ( _Old ` ( bday ` x ) ) u. ( _New ` ( bday ` x ) ) ) <-> ( A e. ( _Old ` ( bday ` x ) ) \/ A e. ( _New ` ( bday ` x ) ) ) ) |
11 |
9 10
|
bitri |
|- ( A e. ( _Made ` ( bday ` x ) ) <-> ( A e. ( _Old ` ( bday ` x ) ) \/ A e. ( _New ` ( bday ` x ) ) ) ) |
12 |
|
lrold |
|- ( ( _Left ` x ) u. ( _Right ` x ) ) = ( _Old ` ( bday ` x ) ) |
13 |
12
|
eleq2i |
|- ( A e. ( ( _Left ` x ) u. ( _Right ` x ) ) <-> A e. ( _Old ` ( bday ` x ) ) ) |
14 |
|
elons |
|- ( x e. On_s <-> ( x e. No /\ ( _Right ` x ) = (/) ) ) |
15 |
14
|
simprbi |
|- ( x e. On_s -> ( _Right ` x ) = (/) ) |
16 |
15
|
adantl |
|- ( ( A e. No /\ x e. On_s ) -> ( _Right ` x ) = (/) ) |
17 |
16
|
uneq2d |
|- ( ( A e. No /\ x e. On_s ) -> ( ( _Left ` x ) u. ( _Right ` x ) ) = ( ( _Left ` x ) u. (/) ) ) |
18 |
|
un0 |
|- ( ( _Left ` x ) u. (/) ) = ( _Left ` x ) |
19 |
17 18
|
eqtrdi |
|- ( ( A e. No /\ x e. On_s ) -> ( ( _Left ` x ) u. ( _Right ` x ) ) = ( _Left ` x ) ) |
20 |
19
|
eleq2d |
|- ( ( A e. No /\ x e. On_s ) -> ( A e. ( ( _Left ` x ) u. ( _Right ` x ) ) <-> A e. ( _Left ` x ) ) ) |
21 |
|
simpll |
|- ( ( ( A e. No /\ x e. On_s ) /\ A e. ( _Left ` x ) ) -> A e. No ) |
22 |
|
onsno |
|- ( x e. On_s -> x e. No ) |
23 |
22
|
ad2antlr |
|- ( ( ( A e. No /\ x e. On_s ) /\ A e. ( _Left ` x ) ) -> x e. No ) |
24 |
|
breq1 |
|- ( xO = A -> ( xO A |
25 |
|
leftval |
|- ( _Left ` x ) = { xO e. ( _Old ` ( bday ` x ) ) | xO |
26 |
24 25
|
elrab2 |
|- ( A e. ( _Left ` x ) <-> ( A e. ( _Old ` ( bday ` x ) ) /\ A |
27 |
26
|
simprbi |
|- ( A e. ( _Left ` x ) -> A |
28 |
27
|
adantl |
|- ( ( ( A e. No /\ x e. On_s ) /\ A e. ( _Left ` x ) ) -> A |
29 |
21 23 28
|
sltled |
|- ( ( ( A e. No /\ x e. On_s ) /\ A e. ( _Left ` x ) ) -> A <_s x ) |
30 |
29
|
ex |
|- ( ( A e. No /\ x e. On_s ) -> ( A e. ( _Left ` x ) -> A <_s x ) ) |
31 |
20 30
|
sylbid |
|- ( ( A e. No /\ x e. On_s ) -> ( A e. ( ( _Left ` x ) u. ( _Right ` x ) ) -> A <_s x ) ) |
32 |
13 31
|
biimtrrid |
|- ( ( A e. No /\ x e. On_s ) -> ( A e. ( _Old ` ( bday ` x ) ) -> A <_s x ) ) |
33 |
|
newbday |
|- ( ( ( bday ` x ) e. On /\ A e. No ) -> ( A e. ( _New ` ( bday ` x ) ) <-> ( bday ` A ) = ( bday ` x ) ) ) |
34 |
1 33
|
mpan |
|- ( A e. No -> ( A e. ( _New ` ( bday ` x ) ) <-> ( bday ` A ) = ( bday ` x ) ) ) |
35 |
34
|
adantr |
|- ( ( A e. No /\ x e. On_s ) -> ( A e. ( _New ` ( bday ` x ) ) <-> ( bday ` A ) = ( bday ` x ) ) ) |
36 |
|
leftssold |
|- ( _Left ` A ) C_ ( _Old ` ( bday ` A ) ) |
37 |
|
fveq2 |
|- ( ( bday ` A ) = ( bday ` x ) -> ( _Old ` ( bday ` A ) ) = ( _Old ` ( bday ` x ) ) ) |
38 |
37
|
adantl |
|- ( ( ( A e. No /\ x e. On_s ) /\ ( bday ` A ) = ( bday ` x ) ) -> ( _Old ` ( bday ` A ) ) = ( _Old ` ( bday ` x ) ) ) |
39 |
15
|
uneq2d |
|- ( x e. On_s -> ( ( _Left ` x ) u. ( _Right ` x ) ) = ( ( _Left ` x ) u. (/) ) ) |
40 |
39 12 18
|
3eqtr3g |
|- ( x e. On_s -> ( _Old ` ( bday ` x ) ) = ( _Left ` x ) ) |
41 |
40
|
ad2antlr |
|- ( ( ( A e. No /\ x e. On_s ) /\ ( bday ` A ) = ( bday ` x ) ) -> ( _Old ` ( bday ` x ) ) = ( _Left ` x ) ) |
42 |
38 41
|
eqtr2d |
|- ( ( ( A e. No /\ x e. On_s ) /\ ( bday ` A ) = ( bday ` x ) ) -> ( _Left ` x ) = ( _Old ` ( bday ` A ) ) ) |
43 |
36 42
|
sseqtrrid |
|- ( ( ( A e. No /\ x e. On_s ) /\ ( bday ` A ) = ( bday ` x ) ) -> ( _Left ` A ) C_ ( _Left ` x ) ) |
44 |
|
slelss |
|- ( ( A e. No /\ x e. No /\ ( bday ` A ) = ( bday ` x ) ) -> ( A <_s x <-> ( _Left ` A ) C_ ( _Left ` x ) ) ) |
45 |
22 44
|
syl3an2 |
|- ( ( A e. No /\ x e. On_s /\ ( bday ` A ) = ( bday ` x ) ) -> ( A <_s x <-> ( _Left ` A ) C_ ( _Left ` x ) ) ) |
46 |
45
|
3expa |
|- ( ( ( A e. No /\ x e. On_s ) /\ ( bday ` A ) = ( bday ` x ) ) -> ( A <_s x <-> ( _Left ` A ) C_ ( _Left ` x ) ) ) |
47 |
43 46
|
mpbird |
|- ( ( ( A e. No /\ x e. On_s ) /\ ( bday ` A ) = ( bday ` x ) ) -> A <_s x ) |
48 |
47
|
ex |
|- ( ( A e. No /\ x e. On_s ) -> ( ( bday ` A ) = ( bday ` x ) -> A <_s x ) ) |
49 |
35 48
|
sylbid |
|- ( ( A e. No /\ x e. On_s ) -> ( A e. ( _New ` ( bday ` x ) ) -> A <_s x ) ) |
50 |
32 49
|
jaod |
|- ( ( A e. No /\ x e. On_s ) -> ( ( A e. ( _Old ` ( bday ` x ) ) \/ A e. ( _New ` ( bday ` x ) ) ) -> A <_s x ) ) |
51 |
11 50
|
biimtrid |
|- ( ( A e. No /\ x e. On_s ) -> ( A e. ( _Made ` ( bday ` x ) ) -> A <_s x ) ) |
52 |
|
madebday |
|- ( ( ( bday ` x ) e. On /\ A e. No ) -> ( A e. ( _Made ` ( bday ` x ) ) <-> ( bday ` A ) C_ ( bday ` x ) ) ) |
53 |
1 52
|
mpan |
|- ( A e. No -> ( A e. ( _Made ` ( bday ` x ) ) <-> ( bday ` A ) C_ ( bday ` x ) ) ) |
54 |
53
|
adantr |
|- ( ( A e. No /\ x e. On_s ) -> ( A e. ( _Made ` ( bday ` x ) ) <-> ( bday ` A ) C_ ( bday ` x ) ) ) |
55 |
|
slenlt |
|- ( ( A e. No /\ x e. No ) -> ( A <_s x <-> -. x |
56 |
22 55
|
sylan2 |
|- ( ( A e. No /\ x e. On_s ) -> ( A <_s x <-> -. x |
57 |
51 54 56
|
3imtr3d |
|- ( ( A e. No /\ x e. On_s ) -> ( ( bday ` A ) C_ ( bday ` x ) -> -. x |
58 |
57
|
con2d |
|- ( ( A e. No /\ x e. On_s ) -> ( x -. ( bday ` A ) C_ ( bday ` x ) ) ) |
59 |
58
|
3impia |
|- ( ( A e. No /\ x e. On_s /\ x -. ( bday ` A ) C_ ( bday ` x ) ) |
60 |
7 59
|
olcnd |
|- ( ( A e. No /\ x e. On_s /\ x ( bday ` x ) e. ( bday ` A ) ) |
61 |
22
|
3ad2ant2 |
|- ( ( A e. No /\ x e. On_s /\ x x e. No ) |
62 |
|
oldbday |
|- ( ( ( bday ` A ) e. On /\ x e. No ) -> ( x e. ( _Old ` ( bday ` A ) ) <-> ( bday ` x ) e. ( bday ` A ) ) ) |
63 |
3 61 62
|
sylancr |
|- ( ( A e. No /\ x e. On_s /\ x ( x e. ( _Old ` ( bday ` A ) ) <-> ( bday ` x ) e. ( bday ` A ) ) ) |
64 |
60 63
|
mpbird |
|- ( ( A e. No /\ x e. On_s /\ x x e. ( _Old ` ( bday ` A ) ) ) |
65 |
64
|
rabssdv |
|- ( A e. No -> { x e. On_s | x |