Metamath Proof Explorer


Theorem madeun

Description: The made set is the union of the old set and the new set. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion madeun
|- ( _M ` A ) = ( ( _Old ` A ) u. ( _N ` A ) )

Proof

Step Hyp Ref Expression
1 newval
 |-  ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) )
2 1 uneq2i
 |-  ( ( _Old ` A ) u. ( _N ` A ) ) = ( ( _Old ` A ) u. ( ( _M ` A ) \ ( _Old ` A ) ) )
3 oldssmade
 |-  ( _Old ` A ) C_ ( _M ` A )
4 undif
 |-  ( ( _Old ` A ) C_ ( _M ` A ) <-> ( ( _Old ` A ) u. ( ( _M ` A ) \ ( _Old ` A ) ) ) = ( _M ` A ) )
5 3 4 mpbi
 |-  ( ( _Old ` A ) u. ( ( _M ` A ) \ ( _Old ` A ) ) ) = ( _M ` A )
6 2 5 eqtr2i
 |-  ( _M ` A ) = ( ( _Old ` A ) u. ( _N ` A ) )