Description: The made set is the union of the old set and the new set. (Contributed by Scott Fenton, 9-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | madeun | |- ( _M ` A ) = ( ( _Old ` A ) u. ( _N ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | newval | |- ( _N ` A ) = ( ( _M ` A ) \ ( _Old ` A ) ) |
|
2 | 1 | uneq2i | |- ( ( _Old ` A ) u. ( _N ` A ) ) = ( ( _Old ` A ) u. ( ( _M ` A ) \ ( _Old ` A ) ) ) |
3 | oldssmade | |- ( _Old ` A ) C_ ( _M ` A ) |
|
4 | undif | |- ( ( _Old ` A ) C_ ( _M ` A ) <-> ( ( _Old ` A ) u. ( ( _M ` A ) \ ( _Old ` A ) ) ) = ( _M ` A ) ) |
|
5 | 3 4 | mpbi | |- ( ( _Old ` A ) u. ( ( _M ` A ) \ ( _Old ` A ) ) ) = ( _M ` A ) |
6 | 2 5 | eqtr2i | |- ( _M ` A ) = ( ( _Old ` A ) u. ( _N ` A ) ) |