Step |
Hyp |
Ref |
Expression |
1 |
|
df-suc |
|- suc A = ( A u. { A } ) |
2 |
1
|
imaeq2i |
|- ( _M " suc A ) = ( _M " ( A u. { A } ) ) |
3 |
|
imaundi |
|- ( _M " ( A u. { A } ) ) = ( ( _M " A ) u. ( _M " { A } ) ) |
4 |
2 3
|
eqtri |
|- ( _M " suc A ) = ( ( _M " A ) u. ( _M " { A } ) ) |
5 |
4
|
unieqi |
|- U. ( _M " suc A ) = U. ( ( _M " A ) u. ( _M " { A } ) ) |
6 |
|
uniun |
|- U. ( ( _M " A ) u. ( _M " { A } ) ) = ( U. ( _M " A ) u. U. ( _M " { A } ) ) |
7 |
5 6
|
eqtri |
|- U. ( _M " suc A ) = ( U. ( _M " A ) u. U. ( _M " { A } ) ) |
8 |
7
|
a1i |
|- ( A e. On -> U. ( _M " suc A ) = ( U. ( _M " A ) u. U. ( _M " { A } ) ) ) |
9 |
|
oldval |
|- ( A e. On -> ( _Old ` A ) = U. ( _M " A ) ) |
10 |
9
|
eqcomd |
|- ( A e. On -> U. ( _M " A ) = ( _Old ` A ) ) |
11 |
|
madef |
|- _M : On --> ~P No |
12 |
|
ffn |
|- ( _M : On --> ~P No -> _M Fn On ) |
13 |
11 12
|
ax-mp |
|- _M Fn On |
14 |
|
fnsnfv |
|- ( ( _M Fn On /\ A e. On ) -> { ( _M ` A ) } = ( _M " { A } ) ) |
15 |
14
|
eqcomd |
|- ( ( _M Fn On /\ A e. On ) -> ( _M " { A } ) = { ( _M ` A ) } ) |
16 |
13 15
|
mpan |
|- ( A e. On -> ( _M " { A } ) = { ( _M ` A ) } ) |
17 |
16
|
unieqd |
|- ( A e. On -> U. ( _M " { A } ) = U. { ( _M ` A ) } ) |
18 |
|
fvex |
|- ( _M ` A ) e. _V |
19 |
18
|
unisn |
|- U. { ( _M ` A ) } = ( _M ` A ) |
20 |
17 19
|
eqtrdi |
|- ( A e. On -> U. ( _M " { A } ) = ( _M ` A ) ) |
21 |
10 20
|
uneq12d |
|- ( A e. On -> ( U. ( _M " A ) u. U. ( _M " { A } ) ) = ( ( _Old ` A ) u. ( _M ` A ) ) ) |
22 |
|
oldssmade |
|- ( _Old ` A ) C_ ( _M ` A ) |
23 |
22
|
a1i |
|- ( A e. On -> ( _Old ` A ) C_ ( _M ` A ) ) |
24 |
|
ssequn1 |
|- ( ( _Old ` A ) C_ ( _M ` A ) <-> ( ( _Old ` A ) u. ( _M ` A ) ) = ( _M ` A ) ) |
25 |
23 24
|
sylib |
|- ( A e. On -> ( ( _Old ` A ) u. ( _M ` A ) ) = ( _M ` A ) ) |
26 |
8 21 25
|
3eqtrrd |
|- ( A e. On -> ( _M ` A ) = U. ( _M " suc A ) ) |
27 |
|
suceloni |
|- ( A e. On -> suc A e. On ) |
28 |
|
oldval |
|- ( suc A e. On -> ( _Old ` suc A ) = U. ( _M " suc A ) ) |
29 |
27 28
|
syl |
|- ( A e. On -> ( _Old ` suc A ) = U. ( _M " suc A ) ) |
30 |
26 29
|
eqtr4d |
|- ( A e. On -> ( _M ` A ) = ( _Old ` suc A ) ) |