Metamath Proof Explorer


Theorem oldssmade

Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion oldssmade
|- ( _Old ` A ) C_ ( _M ` A )

Proof

Step Hyp Ref Expression
1 elold
 |-  ( A e. On -> ( x e. ( _Old ` A ) <-> E. b e. A x e. ( _M ` b ) ) )
2 onelss
 |-  ( A e. On -> ( b e. A -> b C_ A ) )
3 2 imp
 |-  ( ( A e. On /\ b e. A ) -> b C_ A )
4 madess
 |-  ( ( A e. On /\ b C_ A ) -> ( _M ` b ) C_ ( _M ` A ) )
5 3 4 syldan
 |-  ( ( A e. On /\ b e. A ) -> ( _M ` b ) C_ ( _M ` A ) )
6 5 sseld
 |-  ( ( A e. On /\ b e. A ) -> ( x e. ( _M ` b ) -> x e. ( _M ` A ) ) )
7 6 rexlimdva
 |-  ( A e. On -> ( E. b e. A x e. ( _M ` b ) -> x e. ( _M ` A ) ) )
8 1 7 sylbid
 |-  ( A e. On -> ( x e. ( _Old ` A ) -> x e. ( _M ` A ) ) )
9 8 ssrdv
 |-  ( A e. On -> ( _Old ` A ) C_ ( _M ` A ) )
10 oldf
 |-  _Old : On --> ~P No
11 10 fdmi
 |-  dom _Old = On
12 11 eleq2i
 |-  ( A e. dom _Old <-> A e. On )
13 ndmfv
 |-  ( -. A e. dom _Old -> ( _Old ` A ) = (/) )
14 12 13 sylnbir
 |-  ( -. A e. On -> ( _Old ` A ) = (/) )
15 0ss
 |-  (/) C_ ( _M ` A )
16 14 15 eqsstrdi
 |-  ( -. A e. On -> ( _Old ` A ) C_ ( _M ` A ) )
17 9 16 pm2.61i
 |-  ( _Old ` A ) C_ ( _M ` A )