Step |
Hyp |
Ref |
Expression |
1 |
|
elold |
|- ( A e. On -> ( x e. ( _Old ` A ) <-> E. b e. A x e. ( _M ` b ) ) ) |
2 |
|
onelss |
|- ( A e. On -> ( b e. A -> b C_ A ) ) |
3 |
2
|
imp |
|- ( ( A e. On /\ b e. A ) -> b C_ A ) |
4 |
|
madess |
|- ( ( A e. On /\ b C_ A ) -> ( _M ` b ) C_ ( _M ` A ) ) |
5 |
3 4
|
syldan |
|- ( ( A e. On /\ b e. A ) -> ( _M ` b ) C_ ( _M ` A ) ) |
6 |
5
|
sseld |
|- ( ( A e. On /\ b e. A ) -> ( x e. ( _M ` b ) -> x e. ( _M ` A ) ) ) |
7 |
6
|
rexlimdva |
|- ( A e. On -> ( E. b e. A x e. ( _M ` b ) -> x e. ( _M ` A ) ) ) |
8 |
1 7
|
sylbid |
|- ( A e. On -> ( x e. ( _Old ` A ) -> x e. ( _M ` A ) ) ) |
9 |
8
|
ssrdv |
|- ( A e. On -> ( _Old ` A ) C_ ( _M ` A ) ) |
10 |
|
oldf |
|- _Old : On --> ~P No |
11 |
10
|
fdmi |
|- dom _Old = On |
12 |
11
|
eleq2i |
|- ( A e. dom _Old <-> A e. On ) |
13 |
|
ndmfv |
|- ( -. A e. dom _Old -> ( _Old ` A ) = (/) ) |
14 |
12 13
|
sylnbir |
|- ( -. A e. On -> ( _Old ` A ) = (/) ) |
15 |
|
0ss |
|- (/) C_ ( _M ` A ) |
16 |
14 15
|
eqsstrdi |
|- ( -. A e. On -> ( _Old ` A ) C_ ( _M ` A ) ) |
17 |
9 16
|
pm2.61i |
|- ( _Old ` A ) C_ ( _M ` A ) |