Metamath Proof Explorer


Theorem madess

Description: If A is less than or equal to ordinal B , then the made set of A is included in the made set of B . (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion madess
|- ( ( B e. On /\ A C_ B ) -> ( _M ` A ) C_ ( _M ` B ) )

Proof

Step Hyp Ref Expression
1 imass2
 |-  ( A C_ B -> ( _M " A ) C_ ( _M " B ) )
2 1 unissd
 |-  ( A C_ B -> U. ( _M " A ) C_ U. ( _M " B ) )
3 2 sspwd
 |-  ( A C_ B -> ~P U. ( _M " A ) C_ ~P U. ( _M " B ) )
4 3 adantl
 |-  ( ( B e. On /\ A C_ B ) -> ~P U. ( _M " A ) C_ ~P U. ( _M " B ) )
5 4 adantl
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> ~P U. ( _M " A ) C_ ~P U. ( _M " B ) )
6 ssrexv
 |-  ( ~P U. ( _M " A ) C_ ~P U. ( _M " B ) -> ( E. a e. ~P U. ( _M " A ) E. b e. ~P U. ( _M " A ) ( a < E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " A ) ( a <
7 5 6 syl
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> ( E. a e. ~P U. ( _M " A ) E. b e. ~P U. ( _M " A ) ( a < E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " A ) ( a <
8 ssrexv
 |-  ( ~P U. ( _M " A ) C_ ~P U. ( _M " B ) -> ( E. b e. ~P U. ( _M " A ) ( a < E. b e. ~P U. ( _M " B ) ( a <
9 5 8 syl
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> ( E. b e. ~P U. ( _M " A ) ( a < E. b e. ~P U. ( _M " B ) ( a <
10 9 reximdv
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> ( E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " A ) ( a < E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " B ) ( a <
11 7 10 syld
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> ( E. a e. ~P U. ( _M " A ) E. b e. ~P U. ( _M " A ) ( a < E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " B ) ( a <
12 11 adantr
 |-  ( ( ( A e. On /\ ( B e. On /\ A C_ B ) ) /\ x e. No ) -> ( E. a e. ~P U. ( _M " A ) E. b e. ~P U. ( _M " A ) ( a < E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " B ) ( a <
13 12 ss2rabdv
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> { x e. No | E. a e. ~P U. ( _M " A ) E. b e. ~P U. ( _M " A ) ( a <
14 madeval2
 |-  ( A e. On -> ( _M ` A ) = { x e. No | E. a e. ~P U. ( _M " A ) E. b e. ~P U. ( _M " A ) ( a <
15 14 adantr
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> ( _M ` A ) = { x e. No | E. a e. ~P U. ( _M " A ) E. b e. ~P U. ( _M " A ) ( a <
16 madeval2
 |-  ( B e. On -> ( _M ` B ) = { x e. No | E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " B ) ( a <
17 16 adantr
 |-  ( ( B e. On /\ A C_ B ) -> ( _M ` B ) = { x e. No | E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " B ) ( a <
18 17 adantl
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> ( _M ` B ) = { x e. No | E. a e. ~P U. ( _M " B ) E. b e. ~P U. ( _M " B ) ( a <
19 13 15 18 3sstr4d
 |-  ( ( A e. On /\ ( B e. On /\ A C_ B ) ) -> ( _M ` A ) C_ ( _M ` B ) )
20 madef
 |-  _M : On --> ~P No
21 20 fdmi
 |-  dom _M = On
22 21 eleq2i
 |-  ( A e. dom _M <-> A e. On )
23 ndmfv
 |-  ( -. A e. dom _M -> ( _M ` A ) = (/) )
24 22 23 sylnbir
 |-  ( -. A e. On -> ( _M ` A ) = (/) )
25 0ss
 |-  (/) C_ ( _M ` B )
26 24 25 eqsstrdi
 |-  ( -. A e. On -> ( _M ` A ) C_ ( _M ` B ) )
27 26 adantr
 |-  ( ( -. A e. On /\ ( B e. On /\ A C_ B ) ) -> ( _M ` A ) C_ ( _M ` B ) )
28 19 27 pm2.61ian
 |-  ( ( B e. On /\ A C_ B ) -> ( _M ` A ) C_ ( _M ` B ) )