Metamath Proof Explorer


Theorem madess

Description: If A is less than or equal to ordinal B , then the made set of A is included in the made set of B . (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion madess B On A B M A M B

Proof

Step Hyp Ref Expression
1 imass2 A B M A M B
2 1 unissd A B M A M B
3 2 sspwd A B 𝒫 M A 𝒫 M B
4 3 adantl B On A B 𝒫 M A 𝒫 M B
5 4 adantl A On B On A B 𝒫 M A 𝒫 M B
6 ssrexv 𝒫 M A 𝒫 M B a 𝒫 M A b 𝒫 M A a s b a | s b = x a 𝒫 M B b 𝒫 M A a s b a | s b = x
7 5 6 syl A On B On A B a 𝒫 M A b 𝒫 M A a s b a | s b = x a 𝒫 M B b 𝒫 M A a s b a | s b = x
8 ssrexv 𝒫 M A 𝒫 M B b 𝒫 M A a s b a | s b = x b 𝒫 M B a s b a | s b = x
9 5 8 syl A On B On A B b 𝒫 M A a s b a | s b = x b 𝒫 M B a s b a | s b = x
10 9 reximdv A On B On A B a 𝒫 M B b 𝒫 M A a s b a | s b = x a 𝒫 M B b 𝒫 M B a s b a | s b = x
11 7 10 syld A On B On A B a 𝒫 M A b 𝒫 M A a s b a | s b = x a 𝒫 M B b 𝒫 M B a s b a | s b = x
12 11 adantr A On B On A B x No a 𝒫 M A b 𝒫 M A a s b a | s b = x a 𝒫 M B b 𝒫 M B a s b a | s b = x
13 12 ss2rabdv A On B On A B x No | a 𝒫 M A b 𝒫 M A a s b a | s b = x x No | a 𝒫 M B b 𝒫 M B a s b a | s b = x
14 madeval2 A On M A = x No | a 𝒫 M A b 𝒫 M A a s b a | s b = x
15 14 adantr A On B On A B M A = x No | a 𝒫 M A b 𝒫 M A a s b a | s b = x
16 madeval2 B On M B = x No | a 𝒫 M B b 𝒫 M B a s b a | s b = x
17 16 adantr B On A B M B = x No | a 𝒫 M B b 𝒫 M B a s b a | s b = x
18 17 adantl A On B On A B M B = x No | a 𝒫 M B b 𝒫 M B a s b a | s b = x
19 13 15 18 3sstr4d A On B On A B M A M B
20 madef M : On 𝒫 No
21 20 fdmi dom M = On
22 21 eleq2i A dom M A On
23 ndmfv ¬ A dom M M A =
24 22 23 sylnbir ¬ A On M A =
25 0ss M B
26 24 25 eqsstrdi ¬ A On M A M B
27 26 adantr ¬ A On B On A B M A M B
28 19 27 pm2.61ian B On A B M A M B