Metamath Proof Explorer


Theorem madess

Description: If A is less than or equal to ordinal B , then the made set of A is included in the made set of B . (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion madess ( ( 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 imass2 ( 𝐴𝐵 → ( M “ 𝐴 ) ⊆ ( M “ 𝐵 ) )
2 1 unissd ( 𝐴𝐵 ( M “ 𝐴 ) ⊆ ( M “ 𝐵 ) )
3 2 sspwd ( 𝐴𝐵 → 𝒫 ( M “ 𝐴 ) ⊆ 𝒫 ( M “ 𝐵 ) )
4 3 adantl ( ( 𝐵 ∈ On ∧ 𝐴𝐵 ) → 𝒫 ( M “ 𝐴 ) ⊆ 𝒫 ( M “ 𝐵 ) )
5 4 adantl ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → 𝒫 ( M “ 𝐴 ) ⊆ 𝒫 ( M “ 𝐵 ) )
6 ssrexv ( 𝒫 ( M “ 𝐴 ) ⊆ 𝒫 ( M “ 𝐵 ) → ( ∃ 𝑎 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) )
7 5 6 syl ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → ( ∃ 𝑎 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) )
8 ssrexv ( 𝒫 ( M “ 𝐴 ) ⊆ 𝒫 ( M “ 𝐵 ) → ( ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) )
9 5 8 syl ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → ( ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) )
10 9 reximdv ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → ( ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) )
11 7 10 syld ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → ( ∃ 𝑎 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) )
12 11 adantr ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) ∧ 𝑥 No ) → ( ∃ 𝑎 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) )
13 12 ss2rabdv ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → { 𝑥 No ∣ ∃ 𝑎 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } ⊆ { 𝑥 No ∣ ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } )
14 madeval2 ( 𝐴 ∈ On → ( M ‘ 𝐴 ) = { 𝑥 No ∣ ∃ 𝑎 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } )
15 14 adantr ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → ( M ‘ 𝐴 ) = { 𝑥 No ∣ ∃ 𝑎 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } )
16 madeval2 ( 𝐵 ∈ On → ( M ‘ 𝐵 ) = { 𝑥 No ∣ ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } )
17 16 adantr ( ( 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( M ‘ 𝐵 ) = { 𝑥 No ∣ ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } )
18 17 adantl ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → ( M ‘ 𝐵 ) = { 𝑥 No ∣ ∃ 𝑎 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } )
19 13 15 18 3sstr4d ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) )
20 madef M : On ⟶ 𝒫 No
21 20 fdmi dom M = On
22 21 eleq2i ( 𝐴 ∈ dom M ↔ 𝐴 ∈ On )
23 ndmfv ( ¬ 𝐴 ∈ dom M → ( M ‘ 𝐴 ) = ∅ )
24 22 23 sylnbir ( ¬ 𝐴 ∈ On → ( M ‘ 𝐴 ) = ∅ )
25 0ss ∅ ⊆ ( M ‘ 𝐵 )
26 24 25 eqsstrdi ( ¬ 𝐴 ∈ On → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) )
27 26 adantr ( ( ¬ 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴𝐵 ) ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) )
28 19 27 pm2.61ian ( ( 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) )