Step |
Hyp |
Ref |
Expression |
1 |
|
imass2 |
⊢ ( 𝐴 ⊆ 𝐵 → ( M “ 𝐴 ) ⊆ ( M “ 𝐵 ) ) |
2 |
1
|
unissd |
⊢ ( 𝐴 ⊆ 𝐵 → ∪ ( M “ 𝐴 ) ⊆ ∪ ( M “ 𝐵 ) ) |
3 |
2
|
sspwd |
⊢ ( 𝐴 ⊆ 𝐵 → 𝒫 ∪ ( M “ 𝐴 ) ⊆ 𝒫 ∪ ( M “ 𝐵 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) → 𝒫 ∪ ( M “ 𝐴 ) ⊆ 𝒫 ∪ ( M “ 𝐵 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → 𝒫 ∪ ( M “ 𝐴 ) ⊆ 𝒫 ∪ ( M “ 𝐵 ) ) |
6 |
|
ssrexv |
⊢ ( 𝒫 ∪ ( M “ 𝐴 ) ⊆ 𝒫 ∪ ( M “ 𝐵 ) → ( ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → ( ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) ) |
8 |
|
ssrexv |
⊢ ( 𝒫 ∪ ( M “ 𝐴 ) ⊆ 𝒫 ∪ ( M “ 𝐵 ) → ( ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) ) |
9 |
5 8
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → ( ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) ) |
10 |
9
|
reximdv |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → ( ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) ) |
11 |
7 10
|
syld |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → ( ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) ∧ 𝑥 ∈ No ) → ( ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) → ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) ) ) |
13 |
12
|
ss2rabdv |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → { 𝑥 ∈ No ∣ ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } ⊆ { 𝑥 ∈ No ∣ ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } ) |
14 |
|
madeval2 |
⊢ ( 𝐴 ∈ On → ( M ‘ 𝐴 ) = { 𝑥 ∈ No ∣ ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → ( M ‘ 𝐴 ) = { 𝑥 ∈ No ∣ ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐴 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐴 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } ) |
16 |
|
madeval2 |
⊢ ( 𝐵 ∈ On → ( M ‘ 𝐵 ) = { 𝑥 ∈ No ∣ ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } ) |
17 |
16
|
adantr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) → ( M ‘ 𝐵 ) = { 𝑥 ∈ No ∣ ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → ( M ‘ 𝐵 ) = { 𝑥 ∈ No ∣ ∃ 𝑎 ∈ 𝒫 ∪ ( M “ 𝐵 ) ∃ 𝑏 ∈ 𝒫 ∪ ( M “ 𝐵 ) ( 𝑎 <<s 𝑏 ∧ ( 𝑎 |s 𝑏 ) = 𝑥 ) } ) |
19 |
13 15 18
|
3sstr4d |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) ) |
20 |
|
madef |
⊢ M : On ⟶ 𝒫 No |
21 |
20
|
fdmi |
⊢ dom M = On |
22 |
21
|
eleq2i |
⊢ ( 𝐴 ∈ dom M ↔ 𝐴 ∈ On ) |
23 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom M → ( M ‘ 𝐴 ) = ∅ ) |
24 |
22 23
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( M ‘ 𝐴 ) = ∅ ) |
25 |
|
0ss |
⊢ ∅ ⊆ ( M ‘ 𝐵 ) |
26 |
24 25
|
eqsstrdi |
⊢ ( ¬ 𝐴 ∈ On → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) ) |
27 |
26
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) ) |
28 |
19 27
|
pm2.61ian |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ⊆ 𝐵 ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) ) |