Metamath Proof Explorer


Theorem madess

Description: If ordinal A is less than or equal to ordinal B , then the made set of A is included in the made set of B . (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion madess ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 imass2 ( 𝐴𝐵 → ( M “ 𝐴 ) ⊆ ( M “ 𝐵 ) )
2 1 3ad2ant3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( M “ 𝐴 ) ⊆ ( M “ 𝐵 ) )
3 2 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) ∧ 𝑥 No ) → ( M “ 𝐴 ) ⊆ ( M “ 𝐵 ) )
4 3 unissd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) ∧ 𝑥 No ) → ( M “ 𝐴 ) ⊆ ( M “ 𝐵 ) )
5 4 sspwd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) ∧ 𝑥 No ) → 𝒫 ( M “ 𝐴 ) ⊆ 𝒫 ( M “ 𝐵 ) )
6 ssrexv ( 𝒫 ( M “ 𝐴 ) ⊆ 𝒫 ( M “ 𝐵 ) → ( ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
7 5 6 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) ∧ 𝑥 No ) → ( ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
8 ssrexv ( 𝒫 ( M “ 𝐴 ) ⊆ 𝒫 ( M “ 𝐵 ) → ( ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
9 5 8 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) ∧ 𝑥 No ) → ( ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
10 9 reximdv ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) ∧ 𝑥 No ) → ( ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
11 7 10 syld ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) ∧ 𝑥 No ) → ( ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
12 11 ralrimiva ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) → ∀ 𝑥 No ( ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
13 ss2rab ( { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } ⊆ { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } ↔ ∀ 𝑥 No ( ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) → ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) )
14 12 13 sylibr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) → { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } ⊆ { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } )
15 madeval2 ( 𝐴 ∈ On → ( M ‘ 𝐴 ) = { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } )
16 15 3ad2ant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( M ‘ 𝐴 ) = { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ 𝐴 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐴 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } )
17 madeval2 ( 𝐵 ∈ On → ( M ‘ 𝐵 ) = { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } )
18 17 3ad2ant2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( M ‘ 𝐵 ) = { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ 𝐵 ) ∃ 𝑟 ∈ 𝒫 ( M “ 𝐵 ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } )
19 14 16 18 3sstr4d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵 ) → ( M ‘ 𝐴 ) ⊆ ( M ‘ 𝐵 ) )