Metamath Proof Explorer


Theorem oldssmade

Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion oldssmade ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 )

Proof

Step Hyp Ref Expression
1 elold ( 𝐴 ∈ On → ( 𝑥 ∈ ( O ‘ 𝐴 ) ↔ ∃ 𝑏𝐴 𝑥 ∈ ( M ‘ 𝑏 ) ) )
2 onelss ( 𝐴 ∈ On → ( 𝑏𝐴𝑏𝐴 ) )
3 2 imp ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) → 𝑏𝐴 )
4 madess ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) → ( M ‘ 𝑏 ) ⊆ ( M ‘ 𝐴 ) )
5 3 4 syldan ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) → ( M ‘ 𝑏 ) ⊆ ( M ‘ 𝐴 ) )
6 5 sseld ( ( 𝐴 ∈ On ∧ 𝑏𝐴 ) → ( 𝑥 ∈ ( M ‘ 𝑏 ) → 𝑥 ∈ ( M ‘ 𝐴 ) ) )
7 6 rexlimdva ( 𝐴 ∈ On → ( ∃ 𝑏𝐴 𝑥 ∈ ( M ‘ 𝑏 ) → 𝑥 ∈ ( M ‘ 𝐴 ) ) )
8 1 7 sylbid ( 𝐴 ∈ On → ( 𝑥 ∈ ( O ‘ 𝐴 ) → 𝑥 ∈ ( M ‘ 𝐴 ) ) )
9 8 ssrdv ( 𝐴 ∈ On → ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) )
10 oldf O : On ⟶ 𝒫 No
11 10 fdmi dom O = On
12 11 eleq2i ( 𝐴 ∈ dom O ↔ 𝐴 ∈ On )
13 ndmfv ( ¬ 𝐴 ∈ dom O → ( O ‘ 𝐴 ) = ∅ )
14 12 13 sylnbir ( ¬ 𝐴 ∈ On → ( O ‘ 𝐴 ) = ∅ )
15 0ss ∅ ⊆ ( M ‘ 𝐴 )
16 14 15 eqsstrdi ( ¬ 𝐴 ∈ On → ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) )
17 9 16 pm2.61i ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 )