Step |
Hyp |
Ref |
Expression |
1 |
|
elold |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ ( O ‘ 𝐴 ) ↔ ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑏 ) ) ) |
2 |
|
onelss |
⊢ ( 𝐴 ∈ On → ( 𝑏 ∈ 𝐴 → 𝑏 ⊆ 𝐴 ) ) |
3 |
2
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
4 |
|
madess |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ⊆ 𝐴 ) → ( M ‘ 𝑏 ) ⊆ ( M ‘ 𝐴 ) ) |
5 |
3 4
|
syldan |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) → ( M ‘ 𝑏 ) ⊆ ( M ‘ 𝐴 ) ) |
6 |
5
|
sseld |
⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) → ( 𝑥 ∈ ( M ‘ 𝑏 ) → 𝑥 ∈ ( M ‘ 𝐴 ) ) ) |
7 |
6
|
rexlimdva |
⊢ ( 𝐴 ∈ On → ( ∃ 𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘ 𝑏 ) → 𝑥 ∈ ( M ‘ 𝐴 ) ) ) |
8 |
1 7
|
sylbid |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ ( O ‘ 𝐴 ) → 𝑥 ∈ ( M ‘ 𝐴 ) ) ) |
9 |
8
|
ssrdv |
⊢ ( 𝐴 ∈ On → ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) ) |
10 |
|
oldf |
⊢ O : On ⟶ 𝒫 No |
11 |
10
|
fdmi |
⊢ dom O = On |
12 |
11
|
eleq2i |
⊢ ( 𝐴 ∈ dom O ↔ 𝐴 ∈ On ) |
13 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom O → ( O ‘ 𝐴 ) = ∅ ) |
14 |
12 13
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( O ‘ 𝐴 ) = ∅ ) |
15 |
|
0ss |
⊢ ∅ ⊆ ( M ‘ 𝐴 ) |
16 |
14 15
|
eqsstrdi |
⊢ ( ¬ 𝐴 ∈ On → ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) ) |
17 |
9 16
|
pm2.61i |
⊢ ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) |