Step |
Hyp |
Ref |
Expression |
1 |
|
df-made |
|- _M = recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) |
2 |
|
recsfnon |
|- recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) Fn On |
3 |
|
fnfun |
|- ( recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) Fn On -> Fun recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) ) |
4 |
2 3
|
ax-mp |
|- Fun recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) |
5 |
|
funeq |
|- ( _M = recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) -> ( Fun _M <-> Fun recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) ) ) |
6 |
4 5
|
mpbiri |
|- ( _M = recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) -> Fun _M ) |
7 |
1 6
|
ax-mp |
|- Fun _M |
8 |
|
funimaexg |
|- ( ( Fun _M /\ A e. On ) -> ( _M " A ) e. _V ) |
9 |
7 8
|
mpan |
|- ( A e. On -> ( _M " A ) e. _V ) |
10 |
9
|
uniexd |
|- ( A e. On -> U. ( _M " A ) e. _V ) |
11 |
|
imaeq2 |
|- ( x = A -> ( _M " x ) = ( _M " A ) ) |
12 |
11
|
unieqd |
|- ( x = A -> U. ( _M " x ) = U. ( _M " A ) ) |
13 |
|
df-old |
|- _Old = ( x e. On |-> U. ( _M " x ) ) |
14 |
12 13
|
fvmptg |
|- ( ( A e. On /\ U. ( _M " A ) e. _V ) -> ( _Old ` A ) = U. ( _M " A ) ) |
15 |
10 14
|
mpdan |
|- ( A e. On -> ( _Old ` A ) = U. ( _M " A ) ) |