Step |
Hyp |
Ref |
Expression |
1 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
2 |
1
|
imaeq2i |
⊢ ( M “ suc 𝐴 ) = ( M “ ( 𝐴 ∪ { 𝐴 } ) ) |
3 |
|
imaundi |
⊢ ( M “ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) ) |
4 |
2 3
|
eqtri |
⊢ ( M “ suc 𝐴 ) = ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) ) |
5 |
4
|
unieqi |
⊢ ∪ ( M “ suc 𝐴 ) = ∪ ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) ) |
6 |
|
uniun |
⊢ ∪ ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) ) = ( ∪ ( M “ 𝐴 ) ∪ ∪ ( M “ { 𝐴 } ) ) |
7 |
5 6
|
eqtri |
⊢ ∪ ( M “ suc 𝐴 ) = ( ∪ ( M “ 𝐴 ) ∪ ∪ ( M “ { 𝐴 } ) ) |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ On → ∪ ( M “ suc 𝐴 ) = ( ∪ ( M “ 𝐴 ) ∪ ∪ ( M “ { 𝐴 } ) ) ) |
9 |
|
oldval |
⊢ ( 𝐴 ∈ On → ( O ‘ 𝐴 ) = ∪ ( M “ 𝐴 ) ) |
10 |
9
|
eqcomd |
⊢ ( 𝐴 ∈ On → ∪ ( M “ 𝐴 ) = ( O ‘ 𝐴 ) ) |
11 |
|
madef |
⊢ M : On ⟶ 𝒫 No |
12 |
|
ffn |
⊢ ( M : On ⟶ 𝒫 No → M Fn On ) |
13 |
11 12
|
ax-mp |
⊢ M Fn On |
14 |
|
fnsnfv |
⊢ ( ( M Fn On ∧ 𝐴 ∈ On ) → { ( M ‘ 𝐴 ) } = ( M “ { 𝐴 } ) ) |
15 |
14
|
eqcomd |
⊢ ( ( M Fn On ∧ 𝐴 ∈ On ) → ( M “ { 𝐴 } ) = { ( M ‘ 𝐴 ) } ) |
16 |
13 15
|
mpan |
⊢ ( 𝐴 ∈ On → ( M “ { 𝐴 } ) = { ( M ‘ 𝐴 ) } ) |
17 |
16
|
unieqd |
⊢ ( 𝐴 ∈ On → ∪ ( M “ { 𝐴 } ) = ∪ { ( M ‘ 𝐴 ) } ) |
18 |
|
fvex |
⊢ ( M ‘ 𝐴 ) ∈ V |
19 |
18
|
unisn |
⊢ ∪ { ( M ‘ 𝐴 ) } = ( M ‘ 𝐴 ) |
20 |
17 19
|
eqtrdi |
⊢ ( 𝐴 ∈ On → ∪ ( M “ { 𝐴 } ) = ( M ‘ 𝐴 ) ) |
21 |
10 20
|
uneq12d |
⊢ ( 𝐴 ∈ On → ( ∪ ( M “ 𝐴 ) ∪ ∪ ( M “ { 𝐴 } ) ) = ( ( O ‘ 𝐴 ) ∪ ( M ‘ 𝐴 ) ) ) |
22 |
|
oldssmade |
⊢ ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) |
23 |
22
|
a1i |
⊢ ( 𝐴 ∈ On → ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) ) |
24 |
|
ssequn1 |
⊢ ( ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) ↔ ( ( O ‘ 𝐴 ) ∪ ( M ‘ 𝐴 ) ) = ( M ‘ 𝐴 ) ) |
25 |
23 24
|
sylib |
⊢ ( 𝐴 ∈ On → ( ( O ‘ 𝐴 ) ∪ ( M ‘ 𝐴 ) ) = ( M ‘ 𝐴 ) ) |
26 |
8 21 25
|
3eqtrrd |
⊢ ( 𝐴 ∈ On → ( M ‘ 𝐴 ) = ∪ ( M “ suc 𝐴 ) ) |
27 |
|
suceloni |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) |
28 |
|
oldval |
⊢ ( suc 𝐴 ∈ On → ( O ‘ suc 𝐴 ) = ∪ ( M “ suc 𝐴 ) ) |
29 |
27 28
|
syl |
⊢ ( 𝐴 ∈ On → ( O ‘ suc 𝐴 ) = ∪ ( M “ suc 𝐴 ) ) |
30 |
26 29
|
eqtr4d |
⊢ ( 𝐴 ∈ On → ( M ‘ 𝐴 ) = ( O ‘ suc 𝐴 ) ) |