Metamath Proof Explorer


Theorem madeoldsuc

Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion madeoldsuc ( 𝐴 ∈ On → ( M ‘ 𝐴 ) = ( O ‘ suc 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
2 1 imaeq2i ( M “ suc 𝐴 ) = ( M “ ( 𝐴 ∪ { 𝐴 } ) )
3 imaundi ( M “ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) )
4 2 3 eqtri ( M “ suc 𝐴 ) = ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) )
5 4 unieqi ( M “ suc 𝐴 ) = ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) )
6 uniun ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) ) = ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) )
7 5 6 eqtri ( M “ suc 𝐴 ) = ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) )
8 7 a1i ( 𝐴 ∈ On → ( M “ suc 𝐴 ) = ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) ) )
9 oldval ( 𝐴 ∈ On → ( O ‘ 𝐴 ) = ( M “ 𝐴 ) )
10 9 eqcomd ( 𝐴 ∈ On → ( M “ 𝐴 ) = ( O ‘ 𝐴 ) )
11 madef M : On ⟶ 𝒫 No
12 ffn ( M : On ⟶ 𝒫 No → M Fn On )
13 11 12 ax-mp M Fn On
14 fnsnfv ( ( M Fn On ∧ 𝐴 ∈ On ) → { ( M ‘ 𝐴 ) } = ( M “ { 𝐴 } ) )
15 14 eqcomd ( ( M Fn On ∧ 𝐴 ∈ On ) → ( M “ { 𝐴 } ) = { ( M ‘ 𝐴 ) } )
16 13 15 mpan ( 𝐴 ∈ On → ( M “ { 𝐴 } ) = { ( M ‘ 𝐴 ) } )
17 16 unieqd ( 𝐴 ∈ On → ( M “ { 𝐴 } ) = { ( M ‘ 𝐴 ) } )
18 fvex ( M ‘ 𝐴 ) ∈ V
19 18 unisn { ( M ‘ 𝐴 ) } = ( M ‘ 𝐴 )
20 17 19 eqtrdi ( 𝐴 ∈ On → ( M “ { 𝐴 } ) = ( M ‘ 𝐴 ) )
21 10 20 uneq12d ( 𝐴 ∈ On → ( ( M “ 𝐴 ) ∪ ( M “ { 𝐴 } ) ) = ( ( O ‘ 𝐴 ) ∪ ( M ‘ 𝐴 ) ) )
22 oldssmade ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 )
23 22 a1i ( 𝐴 ∈ On → ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) )
24 ssequn1 ( ( O ‘ 𝐴 ) ⊆ ( M ‘ 𝐴 ) ↔ ( ( O ‘ 𝐴 ) ∪ ( M ‘ 𝐴 ) ) = ( M ‘ 𝐴 ) )
25 23 24 sylib ( 𝐴 ∈ On → ( ( O ‘ 𝐴 ) ∪ ( M ‘ 𝐴 ) ) = ( M ‘ 𝐴 ) )
26 8 21 25 3eqtrrd ( 𝐴 ∈ On → ( M ‘ 𝐴 ) = ( M “ suc 𝐴 ) )
27 suceloni ( 𝐴 ∈ On → suc 𝐴 ∈ On )
28 oldval ( suc 𝐴 ∈ On → ( O ‘ suc 𝐴 ) = ( M “ suc 𝐴 ) )
29 27 28 syl ( 𝐴 ∈ On → ( O ‘ suc 𝐴 ) = ( M “ suc 𝐴 ) )
30 26 29 eqtr4d ( 𝐴 ∈ On → ( M ‘ 𝐴 ) = ( O ‘ suc 𝐴 ) )