Metamath Proof Explorer


Theorem onsno

Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025)

Ref Expression
Assertion onsno
|- ( A e. On_s -> A e. No )

Proof

Step Hyp Ref Expression
1 onssno
 |-  On_s C_ No
2 1 sseli
 |-  ( A e. On_s -> A e. No )