Metamath Proof Explorer


Theorem onsno

Description: A surreal ordinal is a surreal. (Contributed by Scott Fenton, 18-Mar-2025)

Ref Expression
Assertion onsno ( 𝐴 ∈ Ons𝐴 No )

Proof

Step Hyp Ref Expression
1 onssno Ons No
2 1 sseli ( 𝐴 ∈ Ons𝐴 No )