Metamath Proof Explorer


Theorem onssno

Description: The surreal ordinals are a subclass of the surreals. (Contributed by Scott Fenton, 18-Mar-2025)

Ref Expression
Assertion onssno Ons No

Proof

Step Hyp Ref Expression
1 df-ons Ons = { 𝑥 No ∣ ( R ‘ 𝑥 ) = ∅ }
2 ssrab2 { 𝑥 No ∣ ( R ‘ 𝑥 ) = ∅ } ⊆ No
3 1 2 eqsstri Ons No