Metamath Proof Explorer


Definition df-ons

Description: Define the surreal ordinals. These are the maximum members of each generation of surreals. Variant of definition from Conway p. 27. (Contributed by Scott Fenton, 18-Mar-2025)

Ref Expression
Assertion df-ons Ons = { 𝑥 No ∣ ( R ‘ 𝑥 ) = ∅ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cons Ons
1 vx 𝑥
2 csur No
3 cright R
4 1 cv 𝑥
5 4 3 cfv ( R ‘ 𝑥 )
6 c0
7 5 6 wceq ( R ‘ 𝑥 ) = ∅
8 7 1 2 crab { 𝑥 No ∣ ( R ‘ 𝑥 ) = ∅ }
9 0 8 wceq Ons = { 𝑥 No ∣ ( R ‘ 𝑥 ) = ∅ }