Metamath Proof Explorer


Definition df-ons

Description: Define the surreal ordinals. These are the maximum members of each generation of surreals. Variant of definition from Conway p. 27. (Contributed by Scott Fenton, 18-Mar-2025)

Ref Expression
Assertion df-ons
|- On_s = { x e. No | ( _Right ` x ) = (/) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cons
 |-  On_s
1 vx
 |-  x
2 csur
 |-  No
3 cright
 |-  _Right
4 1 cv
 |-  x
5 4 3 cfv
 |-  ( _Right ` x )
6 c0
 |-  (/)
7 5 6 wceq
 |-  ( _Right ` x ) = (/)
8 7 1 2 crab
 |-  { x e. No | ( _Right ` x ) = (/) }
9 0 8 wceq
 |-  On_s = { x e. No | ( _Right ` x ) = (/) }