Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | elons | |- ( A e. On_s <-> ( A e. No /\ ( _Right ` A ) = (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |- ( x = A -> ( _Right ` x ) = ( _Right ` A ) ) |
|
2 | 1 | eqeq1d | |- ( x = A -> ( ( _Right ` x ) = (/) <-> ( _Right ` A ) = (/) ) ) |
3 | df-ons | |- On_s = { x e. No | ( _Right ` x ) = (/) } |
|
4 | 2 3 | elrab2 | |- ( A e. On_s <-> ( A e. No /\ ( _Right ` A ) = (/) ) ) |