Database
SURREAL NUMBERS
Subsystems of surreals
Ordinal numbers
elons
Next ⟩
onssno
Metamath Proof Explorer
Ascii
Unicode
Theorem
elons
Description:
Membership in the class of surreal ordinals.
(Contributed by
Scott Fenton
, 18-Mar-2025)
Ref
Expression
Assertion
elons
⊢
A
∈
On
s
↔
A
∈
No
∧
R
⁡
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
x
=
A
→
R
⁡
x
=
R
⁡
A
2
1
eqeq1d
⊢
x
=
A
→
R
⁡
x
=
∅
↔
R
⁡
A
=
∅
3
df-ons
⊢
On
s
=
x
∈
No
|
R
⁡
x
=
∅
4
2
3
elrab2
⊢
A
∈
On
s
↔
A
∈
No
∧
R
⁡
A
=
∅