Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | elons | ⊢ ( 𝐴 ∈ Ons ↔ ( 𝐴 ∈ No ∧ ( R ‘ 𝐴 ) = ∅ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( R ‘ 𝑥 ) = ( R ‘ 𝐴 ) ) | |
2 | 1 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( R ‘ 𝑥 ) = ∅ ↔ ( R ‘ 𝐴 ) = ∅ ) ) |
3 | df-ons | ⊢ Ons = { 𝑥 ∈ No ∣ ( R ‘ 𝑥 ) = ∅ } | |
4 | 2 3 | elrab2 | ⊢ ( 𝐴 ∈ Ons ↔ ( 𝐴 ∈ No ∧ ( R ‘ 𝐴 ) = ∅ ) ) |