Metamath Proof Explorer


Theorem elons

Description: Membership in the class of surreal ordinals. (Contributed by Scott Fenton, 18-Mar-2025)

Ref Expression
Assertion elons ( 𝐴 ∈ Ons ↔ ( 𝐴 No ∧ ( R ‘ 𝐴 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = 𝐴 → ( R ‘ 𝑥 ) = ( R ‘ 𝐴 ) )
2 1 eqeq1d ( 𝑥 = 𝐴 → ( ( R ‘ 𝑥 ) = ∅ ↔ ( R ‘ 𝐴 ) = ∅ ) )
3 df-ons Ons = { 𝑥 No ∣ ( R ‘ 𝑥 ) = ∅ }
4 2 3 elrab2 ( 𝐴 ∈ Ons ↔ ( 𝐴 No ∧ ( R ‘ 𝐴 ) = ∅ ) )