Description: Surreal zero is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0ons | |- 0s e. On_s | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0sno | |- 0s e. No | |
| 2 | right0s | |- ( _Right ` 0s ) = (/) | |
| 3 | elons | |- ( 0s e. On_s <-> ( 0s e. No /\ ( _Right ` 0s ) = (/) ) ) | |
| 4 | 1 2 3 | mpbir2an | |- 0s e. On_s |