Description: Surreal zero is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | 0ons | |- 0s e. On_s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sno | |- 0s e. No |
|
2 | right0s | |- ( _Right ` 0s ) = (/) |
|
3 | elons | |- ( 0s e. On_s <-> ( 0s e. No /\ ( _Right ` 0s ) = (/) ) ) |
|
4 | 1 2 3 | mpbir2an | |- 0s e. On_s |