Database
SURREAL NUMBERS
Subsystems of surreals
Ordinal numbers
0ons
Next ⟩
1ons
Metamath Proof Explorer
Ascii
Unicode
Theorem
0ons
Description:
Surreal zero is a surreal ordinal.
(Contributed by
Scott Fenton
, 18-Mar-2025)
Ref
Expression
Assertion
0ons
⊢
0
s
∈
On
s
Proof
Step
Hyp
Ref
Expression
1
0sno
⊢
0
s
∈
No
2
right0s
⊢
R
⁡
0
s
=
∅
3
elons
⊢
0
s
∈
On
s
↔
0
s
∈
No
∧
R
⁡
0
s
=
∅
4
1
2
3
mpbir2an
⊢
0
s
∈
On
s