Step |
Hyp |
Ref |
Expression |
1 |
|
leftval |
|- ( _L ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x |
2 |
|
rightval |
|- ( _R ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A |
3 |
1 2
|
uneq12i |
|- ( ( _L ` A ) u. ( _R ` A ) ) = ( { x e. ( _Old ` ( bday ` A ) ) | x |
4 |
|
unrab |
|- ( { x e. ( _Old ` ( bday ` A ) ) | x |
5 |
3 4
|
eqtri |
|- ( ( _L ` A ) u. ( _R ` A ) ) = { x e. ( _Old ` ( bday ` A ) ) | ( x |
6 |
|
oldirr |
|- -. A e. ( _Old ` ( bday ` A ) ) |
7 |
|
eleq1 |
|- ( x = A -> ( x e. ( _Old ` ( bday ` A ) ) <-> A e. ( _Old ` ( bday ` A ) ) ) ) |
8 |
6 7
|
mtbiri |
|- ( x = A -> -. x e. ( _Old ` ( bday ` A ) ) ) |
9 |
8
|
necon2ai |
|- ( x e. ( _Old ` ( bday ` A ) ) -> x =/= A ) |
10 |
9
|
adantl |
|- ( ( A e. No /\ x e. ( _Old ` ( bday ` A ) ) ) -> x =/= A ) |
11 |
|
oldssno |
|- ( _Old ` ( bday ` A ) ) C_ No |
12 |
11
|
sseli |
|- ( x e. ( _Old ` ( bday ` A ) ) -> x e. No ) |
13 |
|
slttrine |
|- ( ( x e. No /\ A e. No ) -> ( x =/= A <-> ( x |
14 |
13
|
ancoms |
|- ( ( A e. No /\ x e. No ) -> ( x =/= A <-> ( x |
15 |
12 14
|
sylan2 |
|- ( ( A e. No /\ x e. ( _Old ` ( bday ` A ) ) ) -> ( x =/= A <-> ( x |
16 |
10 15
|
mpbid |
|- ( ( A e. No /\ x e. ( _Old ` ( bday ` A ) ) ) -> ( x |
17 |
16
|
rabeqcda |
|- ( A e. No -> { x e. ( _Old ` ( bday ` A ) ) | ( x |
18 |
5 17
|
syl5eq |
|- ( A e. No -> ( ( _L ` A ) u. ( _R ` A ) ) = ( _Old ` ( bday ` A ) ) ) |
19 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
20 |
|
leftf |
|- _L : No --> ~P No |
21 |
20
|
fdmi |
|- dom _L = No |
22 |
21
|
eleq2i |
|- ( A e. dom _L <-> A e. No ) |
23 |
|
ndmfv |
|- ( -. A e. dom _L -> ( _L ` A ) = (/) ) |
24 |
22 23
|
sylnbir |
|- ( -. A e. No -> ( _L ` A ) = (/) ) |
25 |
|
rightf |
|- _R : No --> ~P No |
26 |
25
|
fdmi |
|- dom _R = No |
27 |
26
|
eleq2i |
|- ( A e. dom _R <-> A e. No ) |
28 |
|
ndmfv |
|- ( -. A e. dom _R -> ( _R ` A ) = (/) ) |
29 |
27 28
|
sylnbir |
|- ( -. A e. No -> ( _R ` A ) = (/) ) |
30 |
24 29
|
uneq12d |
|- ( -. A e. No -> ( ( _L ` A ) u. ( _R ` A ) ) = ( (/) u. (/) ) ) |
31 |
|
bdaydm |
|- dom bday = No |
32 |
31
|
eleq2i |
|- ( A e. dom bday <-> A e. No ) |
33 |
|
ndmfv |
|- ( -. A e. dom bday -> ( bday ` A ) = (/) ) |
34 |
32 33
|
sylnbir |
|- ( -. A e. No -> ( bday ` A ) = (/) ) |
35 |
34
|
fveq2d |
|- ( -. A e. No -> ( _Old ` ( bday ` A ) ) = ( _Old ` (/) ) ) |
36 |
|
old0 |
|- ( _Old ` (/) ) = (/) |
37 |
35 36
|
eqtrdi |
|- ( -. A e. No -> ( _Old ` ( bday ` A ) ) = (/) ) |
38 |
19 30 37
|
3eqtr4a |
|- ( -. A e. No -> ( ( _L ` A ) u. ( _R ` A ) ) = ( _Old ` ( bday ` A ) ) ) |
39 |
18 38
|
pm2.61i |
|- ( ( _L ` A ) u. ( _R ` A ) ) = ( _Old ` ( bday ` A ) ) |