Metamath Proof Explorer


Theorem lrold

Description: The union of the left and right options of a surreal make its old set. (Contributed by Scott Fenton, 12-Aug-2024)

Ref Expression
Assertion lrold ( 𝐴 No → ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( O ‘ ( bday 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 leftval ( 𝐴 No → ( L ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝑥 <s 𝐴 } )
2 rightval ( 𝐴 No → ( R ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥 } )
3 1 2 uneq12d ( 𝐴 No → ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ∪ { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥 } ) )
4 unrab ( { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝑥 <s 𝐴 } ∪ { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥 } ) = { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ ( 𝑥 <s 𝐴𝐴 <s 𝑥 ) }
5 3 4 eqtrdi ( 𝐴 No → ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ ( 𝑥 <s 𝐴𝐴 <s 𝑥 ) } )
6 oldirr ¬ 𝐴 ∈ ( O ‘ ( bday 𝐴 ) )
7 eleq1 ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ↔ 𝐴 ∈ ( O ‘ ( bday 𝐴 ) ) ) )
8 6 7 mtbiri ( 𝑥 = 𝐴 → ¬ 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) )
9 8 necon2ai ( 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) → 𝑥𝐴 )
10 9 adantl ( ( 𝐴 No 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ) → 𝑥𝐴 )
11 bdayelon ( bday 𝐴 ) ∈ On
12 oldf O : On ⟶ 𝒫 No
13 12 ffvelrni ( ( bday 𝐴 ) ∈ On → ( O ‘ ( bday 𝐴 ) ) ∈ 𝒫 No )
14 13 elpwid ( ( bday 𝐴 ) ∈ On → ( O ‘ ( bday 𝐴 ) ) ⊆ No )
15 11 14 ax-mp ( O ‘ ( bday 𝐴 ) ) ⊆ No
16 15 sseli ( 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) → 𝑥 No )
17 slttrine ( ( 𝑥 No 𝐴 No ) → ( 𝑥𝐴 ↔ ( 𝑥 <s 𝐴𝐴 <s 𝑥 ) ) )
18 17 ancoms ( ( 𝐴 No 𝑥 No ) → ( 𝑥𝐴 ↔ ( 𝑥 <s 𝐴𝐴 <s 𝑥 ) ) )
19 16 18 sylan2 ( ( 𝐴 No 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ) → ( 𝑥𝐴 ↔ ( 𝑥 <s 𝐴𝐴 <s 𝑥 ) ) )
20 10 19 mpbid ( ( 𝐴 No 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ) → ( 𝑥 <s 𝐴𝐴 <s 𝑥 ) )
21 20 rabeqcda ( 𝐴 No → { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ ( 𝑥 <s 𝐴𝐴 <s 𝑥 ) } = ( O ‘ ( bday 𝐴 ) ) )
22 5 21 eqtrd ( 𝐴 No → ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( O ‘ ( bday 𝐴 ) ) )