Metamath Proof Explorer


Theorem onsleft

Description: The left set of a surreal ordinal is the same as its old set. (Contributed by Scott Fenton, 6-Nov-2025)

Ref Expression
Assertion onsleft
|- ( A e. On_s -> ( _Old ` ( bday ` A ) ) = ( _Left ` A ) )

Proof

Step Hyp Ref Expression
1 elons
 |-  ( A e. On_s <-> ( A e. No /\ ( _Right ` A ) = (/) ) )
2 1 simprbi
 |-  ( A e. On_s -> ( _Right ` A ) = (/) )
3 2 uneq2d
 |-  ( A e. On_s -> ( ( _Left ` A ) u. ( _Right ` A ) ) = ( ( _Left ` A ) u. (/) ) )
4 lrold
 |-  ( ( _Left ` A ) u. ( _Right ` A ) ) = ( _Old ` ( bday ` A ) )
5 un0
 |-  ( ( _Left ` A ) u. (/) ) = ( _Left ` A )
6 3 4 5 3eqtr3g
 |-  ( A e. On_s -> ( _Old ` ( bday ` A ) ) = ( _Left ` A ) )