Description: A surreal ordinal is equal to the cut of its left set and the empty set. (Contributed by Scott Fenton, 29-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onscutleft | ⊢ ( 𝐴 ∈ Ons → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsno | ⊢ ( 𝐴 ∈ Ons → 𝐴 ∈ No ) | |
| 2 | lrcut | ⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ Ons → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
| 4 | elons | ⊢ ( 𝐴 ∈ Ons ↔ ( 𝐴 ∈ No ∧ ( R ‘ 𝐴 ) = ∅ ) ) | |
| 5 | 4 | simprbi | ⊢ ( 𝐴 ∈ Ons → ( R ‘ 𝐴 ) = ∅ ) |
| 6 | 5 | oveq2d | ⊢ ( 𝐴 ∈ Ons → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
| 7 | 3 6 | eqtr3d | ⊢ ( 𝐴 ∈ Ons → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |