Metamath Proof Explorer


Theorem onscutleft

Description: A surreal ordinal is equal to the cut of its left set and the empty set. (Contributed by Scott Fenton, 29-Mar-2025)

Ref Expression
Assertion onscutleft ( 𝐴 ∈ Ons𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) )

Proof

Step Hyp Ref Expression
1 onsno ( 𝐴 ∈ Ons𝐴 No )
2 lrcut ( 𝐴 No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 )
3 1 2 syl ( 𝐴 ∈ Ons → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 )
4 elons ( 𝐴 ∈ Ons ↔ ( 𝐴 No ∧ ( R ‘ 𝐴 ) = ∅ ) )
5 4 simprbi ( 𝐴 ∈ Ons → ( R ‘ 𝐴 ) = ∅ )
6 5 oveq2d ( 𝐴 ∈ Ons → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐴 ) |s ∅ ) )
7 3 6 eqtr3d ( 𝐴 ∈ Ons𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) )