| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onsno |
⊢ ( 𝐴 ∈ Ons → 𝐴 ∈ No ) |
| 2 |
|
sltonex |
⊢ ( 𝐴 ∈ No → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∈ V ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∈ V ) |
| 4 |
|
snexg |
⊢ ( 𝐴 ∈ Ons → { 𝐴 } ∈ V ) |
| 5 |
|
ssrab2 |
⊢ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ⊆ Ons |
| 6 |
|
onssno |
⊢ Ons ⊆ No |
| 7 |
5 6
|
sstri |
⊢ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ⊆ No |
| 8 |
7
|
a1i |
⊢ ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ⊆ No ) |
| 9 |
1
|
snssd |
⊢ ( 𝐴 ∈ Ons → { 𝐴 } ⊆ No ) |
| 10 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 <s 𝐴 ↔ 𝑦 <s 𝐴 ) ) |
| 11 |
10
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ↔ ( 𝑦 ∈ Ons ∧ 𝑦 <s 𝐴 ) ) |
| 12 |
11
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } → 𝑦 <s 𝐴 ) |
| 13 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝐴 } ↔ 𝑧 = 𝐴 ) |
| 14 |
|
breq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑦 <s 𝑧 ↔ 𝑦 <s 𝐴 ) ) |
| 15 |
13 14
|
sylbi |
⊢ ( 𝑧 ∈ { 𝐴 } → ( 𝑦 <s 𝑧 ↔ 𝑦 <s 𝐴 ) ) |
| 16 |
12 15
|
syl5ibrcom |
⊢ ( 𝑦 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } → ( 𝑧 ∈ { 𝐴 } → 𝑦 <s 𝑧 ) ) |
| 17 |
16
|
imp |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∧ 𝑧 ∈ { 𝐴 } ) → 𝑦 <s 𝑧 ) |
| 18 |
17
|
3adant1 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∧ 𝑧 ∈ { 𝐴 } ) → 𝑦 <s 𝑧 ) |
| 19 |
3 4 8 9 18
|
ssltd |
⊢ ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝐴 } ) |
| 20 |
|
snelpwi |
⊢ ( 𝐴 ∈ No → { 𝐴 } ∈ 𝒫 No ) |
| 21 |
|
nulssgt |
⊢ ( { 𝐴 } ∈ 𝒫 No → { 𝐴 } <<s ∅ ) |
| 22 |
1 20 21
|
3syl |
⊢ ( 𝐴 ∈ Ons → { 𝐴 } <<s ∅ ) |
| 23 |
|
ssltsep |
⊢ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝑦 } → ∀ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∀ 𝑤 ∈ { 𝑦 } 𝑧 <s 𝑤 ) |
| 24 |
|
vex |
⊢ 𝑦 ∈ V |
| 25 |
|
breq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑧 <s 𝑤 ↔ 𝑧 <s 𝑦 ) ) |
| 26 |
24 25
|
ralsn |
⊢ ( ∀ 𝑤 ∈ { 𝑦 } 𝑧 <s 𝑤 ↔ 𝑧 <s 𝑦 ) |
| 27 |
26
|
ralbii |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∀ 𝑤 ∈ { 𝑦 } 𝑧 <s 𝑤 ↔ ∀ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } 𝑧 <s 𝑦 ) |
| 28 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 <s 𝐴 ↔ 𝑧 <s 𝐴 ) ) |
| 29 |
28
|
ralrab |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } 𝑧 <s 𝑦 ↔ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 → 𝑧 <s 𝑦 ) ) |
| 30 |
27 29
|
bitri |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∀ 𝑤 ∈ { 𝑦 } 𝑧 <s 𝑤 ↔ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 → 𝑧 <s 𝑦 ) ) |
| 31 |
23 30
|
sylib |
⊢ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝑦 } → ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 → 𝑧 <s 𝑦 ) ) |
| 32 |
|
fvex |
⊢ ( L ‘ 𝑦 ) ∈ V |
| 33 |
|
fvex |
⊢ ( R ‘ 𝑦 ) ∈ V |
| 34 |
32 33
|
unex |
⊢ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ V |
| 35 |
34
|
a1i |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ V ) |
| 36 |
|
leftssno |
⊢ ( L ‘ 𝑦 ) ⊆ No |
| 37 |
|
rightssno |
⊢ ( R ‘ 𝑦 ) ⊆ No |
| 38 |
36 37
|
unssi |
⊢ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ⊆ No |
| 39 |
38
|
a1i |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ⊆ No ) |
| 40 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) |
| 41 |
35 39 40
|
elons2d |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ Ons ) |
| 42 |
34
|
elpw |
⊢ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ 𝒫 No ↔ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ⊆ No ) |
| 43 |
38 42
|
mpbir |
⊢ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ 𝒫 No |
| 44 |
|
nulssgt |
⊢ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ 𝒫 No → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ) |
| 45 |
43 44
|
mp1i |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ) |
| 46 |
|
un0 |
⊢ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) = ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |
| 47 |
|
lrold |
⊢ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) = ( O ‘ ( bday ‘ 𝑦 ) ) |
| 48 |
46 47
|
eqtri |
⊢ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) = ( O ‘ ( bday ‘ 𝑦 ) ) |
| 49 |
48
|
imaeq2i |
⊢ ( bday “ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) ) = ( bday “ ( O ‘ ( bday ‘ 𝑦 ) ) ) |
| 50 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ) → 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ) |
| 51 |
|
bdayelon |
⊢ ( bday ‘ 𝑦 ) ∈ On |
| 52 |
|
oldssno |
⊢ ( O ‘ ( bday ‘ 𝑦 ) ) ⊆ No |
| 53 |
52
|
sseli |
⊢ ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) → 𝑧 ∈ No ) |
| 54 |
53
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ) → 𝑧 ∈ No ) |
| 55 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑦 ) ∈ On ∧ 𝑧 ∈ No ) → ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ↔ ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑦 ) ) ) |
| 56 |
51 54 55
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ) → ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ↔ ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑦 ) ) ) |
| 57 |
50 56
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ) → ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑦 ) ) |
| 58 |
57
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ∀ 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑦 ) ) |
| 59 |
|
bdayfun |
⊢ Fun bday |
| 60 |
|
bdaydm |
⊢ dom bday = No |
| 61 |
52 60
|
sseqtrri |
⊢ ( O ‘ ( bday ‘ 𝑦 ) ) ⊆ dom bday |
| 62 |
|
funimass4 |
⊢ ( ( Fun bday ∧ ( O ‘ ( bday ‘ 𝑦 ) ) ⊆ dom bday ) → ( ( bday “ ( O ‘ ( bday ‘ 𝑦 ) ) ) ⊆ ( bday ‘ 𝑦 ) ↔ ∀ 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑦 ) ) ) |
| 63 |
59 61 62
|
mp2an |
⊢ ( ( bday “ ( O ‘ ( bday ‘ 𝑦 ) ) ) ⊆ ( bday ‘ 𝑦 ) ↔ ∀ 𝑧 ∈ ( O ‘ ( bday ‘ 𝑦 ) ) ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑦 ) ) |
| 64 |
58 63
|
sylibr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday “ ( O ‘ ( bday ‘ 𝑦 ) ) ) ⊆ ( bday ‘ 𝑦 ) ) |
| 65 |
49 64
|
eqsstrid |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday “ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) ) ⊆ ( bday ‘ 𝑦 ) ) |
| 66 |
|
scutbdaybnd |
⊢ ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ∧ ( bday ‘ 𝑦 ) ∈ On ∧ ( bday “ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) ) ⊆ ( bday ‘ 𝑦 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday ‘ 𝑦 ) ) |
| 67 |
51 66
|
mp3an2 |
⊢ ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ∧ ( bday “ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) ) ⊆ ( bday ‘ 𝑦 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday ‘ 𝑦 ) ) |
| 68 |
45 65 67
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday ‘ 𝑦 ) ) |
| 69 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) |
| 70 |
|
bdayelon |
⊢ ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ On |
| 71 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
| 72 |
|
ontr2 |
⊢ ( ( ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ) → ( ( ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday ‘ 𝑦 ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 73 |
70 71 72
|
mp2an |
⊢ ( ( ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday ‘ 𝑦 ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday ‘ 𝐴 ) ) |
| 74 |
68 69 73
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday ‘ 𝐴 ) ) |
| 75 |
45
|
scutcld |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ No ) |
| 76 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ No ) → ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 77 |
71 75 76
|
sylancr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 78 |
74 77
|
mpbird |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 79 |
|
elons |
⊢ ( 𝐴 ∈ Ons ↔ ( 𝐴 ∈ No ∧ ( R ‘ 𝐴 ) = ∅ ) ) |
| 80 |
79
|
simprbi |
⊢ ( 𝐴 ∈ Ons → ( R ‘ 𝐴 ) = ∅ ) |
| 81 |
80
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( R ‘ 𝐴 ) = ∅ ) |
| 82 |
81
|
uneq2d |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐴 ) ∪ ∅ ) ) |
| 83 |
|
lrold |
⊢ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( O ‘ ( bday ‘ 𝐴 ) ) |
| 84 |
|
un0 |
⊢ ( ( L ‘ 𝐴 ) ∪ ∅ ) = ( L ‘ 𝐴 ) |
| 85 |
82 83 84
|
3eqtr3g |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( O ‘ ( bday ‘ 𝐴 ) ) = ( L ‘ 𝐴 ) ) |
| 86 |
78 85
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( L ‘ 𝐴 ) ) |
| 87 |
|
leftlt |
⊢ ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( L ‘ 𝐴 ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 ) |
| 88 |
86 87
|
syl |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 ) |
| 89 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → 𝑦 ∈ No ) |
| 90 |
|
slerflex |
⊢ ( 𝑦 ∈ No → 𝑦 ≤s 𝑦 ) |
| 91 |
|
lrcut |
⊢ ( 𝑦 ∈ No → ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) = 𝑦 ) |
| 92 |
90 91
|
breqtrrd |
⊢ ( 𝑦 ∈ No → 𝑦 ≤s ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) ) |
| 93 |
89 92
|
syl |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → 𝑦 ≤s ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) ) |
| 94 |
|
uneq2 |
⊢ ( ( R ‘ 𝑦 ) = ∅ → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) = ( ( L ‘ 𝑦 ) ∪ ∅ ) ) |
| 95 |
|
un0 |
⊢ ( ( L ‘ 𝑦 ) ∪ ∅ ) = ( L ‘ 𝑦 ) |
| 96 |
94 95
|
eqtrdi |
⊢ ( ( R ‘ 𝑦 ) = ∅ → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) = ( L ‘ 𝑦 ) ) |
| 97 |
|
eqcom |
⊢ ( ( R ‘ 𝑦 ) = ∅ ↔ ∅ = ( R ‘ 𝑦 ) ) |
| 98 |
97
|
biimpi |
⊢ ( ( R ‘ 𝑦 ) = ∅ → ∅ = ( R ‘ 𝑦 ) ) |
| 99 |
96 98
|
oveq12d |
⊢ ( ( R ‘ 𝑦 ) = ∅ → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) = ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) ) |
| 100 |
99
|
breq2d |
⊢ ( ( R ‘ 𝑦 ) = ∅ → ( 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ 𝑦 ≤s ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) ) ) |
| 101 |
93 100
|
imbitrrid |
⊢ ( ( R ‘ 𝑦 ) = ∅ → ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) |
| 102 |
|
simprlr |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑦 ∈ No ) |
| 103 |
75
|
adantl |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ No ) |
| 104 |
|
n0 |
⊢ ( ( R ‘ 𝑦 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( R ‘ 𝑦 ) ) |
| 105 |
|
breq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑦 ≤s 𝑧 ↔ 𝑦 ≤s 𝑤 ) ) |
| 106 |
|
elun2 |
⊢ ( 𝑤 ∈ ( R ‘ 𝑦 ) → 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
| 108 |
|
simprlr |
⊢ ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑦 ∈ No ) |
| 109 |
37
|
sseli |
⊢ ( 𝑤 ∈ ( R ‘ 𝑦 ) → 𝑤 ∈ No ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑤 ∈ No ) |
| 111 |
|
rightgt |
⊢ ( 𝑤 ∈ ( R ‘ 𝑦 ) → 𝑦 <s 𝑤 ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑦 <s 𝑤 ) |
| 113 |
108 110 112
|
sltled |
⊢ ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑦 ≤s 𝑤 ) |
| 114 |
105 107 113
|
rspcedvdw |
⊢ ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ) |
| 115 |
114
|
ex |
⊢ ( 𝑤 ∈ ( R ‘ 𝑦 ) → ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ) ) |
| 116 |
115
|
exlimiv |
⊢ ( ∃ 𝑤 𝑤 ∈ ( R ‘ 𝑦 ) → ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ) ) |
| 117 |
104 116
|
sylbi |
⊢ ( ( R ‘ 𝑦 ) ≠ ∅ → ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ) ) |
| 118 |
117
|
imp |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ) |
| 119 |
118
|
orcd |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ( ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑦 ) 𝑤 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) |
| 120 |
|
lltropt |
⊢ ( L ‘ 𝑦 ) <<s ( R ‘ 𝑦 ) |
| 121 |
120
|
a1i |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ( L ‘ 𝑦 ) <<s ( R ‘ 𝑦 ) ) |
| 122 |
43 44
|
mp1i |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ) |
| 123 |
102 91
|
syl |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) = 𝑦 ) |
| 124 |
123
|
eqcomd |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑦 = ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) ) |
| 125 |
|
eqidd |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) |
| 126 |
|
sltrec |
⊢ ( ( ( ( L ‘ 𝑦 ) <<s ( R ‘ 𝑦 ) ∧ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ) ∧ ( 𝑦 = ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) ∧ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) → ( 𝑦 <s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ ( ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑦 ) 𝑤 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) ) |
| 127 |
121 122 124 125 126
|
syl22anc |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → ( 𝑦 <s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ ( ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑦 ) 𝑤 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) ) |
| 128 |
119 127
|
mpbird |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑦 <s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) |
| 129 |
102 103 128
|
sltled |
⊢ ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) → 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) |
| 130 |
129
|
ex |
⊢ ( ( R ‘ 𝑦 ) ≠ ∅ → ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) |
| 131 |
101 130
|
pm2.61ine |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) |
| 132 |
|
slenlt |
⊢ ( ( 𝑦 ∈ No ∧ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ No ) → ( 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) ) |
| 133 |
89 75 132
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ( 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) ) |
| 134 |
131 133
|
mpbid |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) |
| 135 |
|
breq1 |
⊢ ( 𝑧 = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) → ( 𝑧 <s 𝐴 ↔ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 ) ) |
| 136 |
|
breq1 |
⊢ ( 𝑧 = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) → ( 𝑧 <s 𝑦 ↔ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) ) |
| 137 |
136
|
notbid |
⊢ ( 𝑧 = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) → ( ¬ 𝑧 <s 𝑦 ↔ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) ) |
| 138 |
135 137
|
anbi12d |
⊢ ( 𝑧 = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) → ( ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) ↔ ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 ∧ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) ) ) |
| 139 |
138
|
rspcev |
⊢ ( ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ Ons ∧ ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 ∧ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) ) → ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) ) |
| 140 |
41 88 134 139
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) ∧ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) → ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) ) |
| 141 |
140
|
ex |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) → ( ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) → ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) ) ) |
| 142 |
|
ontri1 |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ ( bday ‘ 𝑦 ) ∈ On ) → ( ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ↔ ¬ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 143 |
71 51 142
|
mp2an |
⊢ ( ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ↔ ¬ ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ) |
| 144 |
143
|
con2bii |
⊢ ( ( bday ‘ 𝑦 ) ∈ ( bday ‘ 𝐴 ) ↔ ¬ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ) |
| 145 |
|
rexanali |
⊢ ( ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) ↔ ¬ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 → 𝑧 <s 𝑦 ) ) |
| 146 |
141 144 145
|
3imtr3g |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) → ( ¬ ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) → ¬ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 → 𝑧 <s 𝑦 ) ) ) |
| 147 |
146
|
con4d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) → ( ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 → 𝑧 <s 𝑦 ) → ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
| 148 |
31 147
|
syl5 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) → ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝑦 } → ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
| 149 |
148
|
adantrd |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝑦 ∈ No ) → ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) → ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
| 150 |
149
|
ralrimiva |
⊢ ( 𝐴 ∈ Ons → ∀ 𝑦 ∈ No ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) → ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
| 151 |
3 8
|
elpwd |
⊢ ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∈ 𝒫 No ) |
| 152 |
|
nulssgt |
⊢ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } ∈ 𝒫 No → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s ∅ ) |
| 153 |
151 152
|
syl |
⊢ ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s ∅ ) |
| 154 |
|
eqscut2 |
⊢ ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s ∅ ∧ 𝐴 ∈ No ) → ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } |s ∅ ) = 𝐴 ↔ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝐴 } ∧ { 𝐴 } <<s ∅ ∧ ∀ 𝑦 ∈ No ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) → ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) ) |
| 155 |
153 1 154
|
syl2anc |
⊢ ( 𝐴 ∈ Ons → ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } |s ∅ ) = 𝐴 ↔ ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝐴 } ∧ { 𝐴 } <<s ∅ ∧ ∀ 𝑦 ∈ No ( ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) → ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) ) |
| 156 |
19 22 150 155
|
mpbir3and |
⊢ ( 𝐴 ∈ Ons → ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } |s ∅ ) = 𝐴 ) |
| 157 |
156
|
eqcomd |
⊢ ( 𝐴 ∈ Ons → 𝐴 = ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } |s ∅ ) ) |