Metamath Proof Explorer


Theorem onscutlt

Description: A surreal ordinal is the simplest number greater than all previous surreal ordinals. Theorem 15 of Conway p. 28. (Contributed by Scott Fenton, 4-Nov-2025)

Ref Expression
Assertion onscutlt ( 𝐴 ∈ Ons𝐴 = ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } |s ∅ ) )

Proof

Step Hyp Ref Expression
1 onsno ( 𝐴 ∈ Ons𝐴 No )
2 sltonex ( 𝐴 No → { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∈ V )
3 1 2 syl ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∈ V )
4 snexg ( 𝐴 ∈ Ons → { 𝐴 } ∈ V )
5 ssrab2 { 𝑥 ∈ Ons𝑥 <s 𝐴 } ⊆ Ons
6 onssno Ons No
7 5 6 sstri { 𝑥 ∈ Ons𝑥 <s 𝐴 } ⊆ No
8 7 a1i ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons𝑥 <s 𝐴 } ⊆ No )
9 1 snssd ( 𝐴 ∈ Ons → { 𝐴 } ⊆ No )
10 breq1 ( 𝑥 = 𝑦 → ( 𝑥 <s 𝐴𝑦 <s 𝐴 ) )
11 10 elrab ( 𝑦 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } ↔ ( 𝑦 ∈ Ons𝑦 <s 𝐴 ) )
12 11 simprbi ( 𝑦 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } → 𝑦 <s 𝐴 )
13 velsn ( 𝑧 ∈ { 𝐴 } ↔ 𝑧 = 𝐴 )
14 breq2 ( 𝑧 = 𝐴 → ( 𝑦 <s 𝑧𝑦 <s 𝐴 ) )
15 13 14 sylbi ( 𝑧 ∈ { 𝐴 } → ( 𝑦 <s 𝑧𝑦 <s 𝐴 ) )
16 12 15 syl5ibrcom ( 𝑦 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } → ( 𝑧 ∈ { 𝐴 } → 𝑦 <s 𝑧 ) )
17 16 imp ( ( 𝑦 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∧ 𝑧 ∈ { 𝐴 } ) → 𝑦 <s 𝑧 )
18 17 3adant1 ( ( 𝐴 ∈ Ons𝑦 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∧ 𝑧 ∈ { 𝐴 } ) → 𝑦 <s 𝑧 )
19 3 4 8 9 18 ssltd ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝐴 } )
20 snelpwi ( 𝐴 No → { 𝐴 } ∈ 𝒫 No )
21 nulssgt ( { 𝐴 } ∈ 𝒫 No → { 𝐴 } <<s ∅ )
22 1 20 21 3syl ( 𝐴 ∈ Ons → { 𝐴 } <<s ∅ )
23 ssltsep ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝑦 } → ∀ 𝑧 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∀ 𝑤 ∈ { 𝑦 } 𝑧 <s 𝑤 )
24 vex 𝑦 ∈ V
25 breq2 ( 𝑤 = 𝑦 → ( 𝑧 <s 𝑤𝑧 <s 𝑦 ) )
26 24 25 ralsn ( ∀ 𝑤 ∈ { 𝑦 } 𝑧 <s 𝑤𝑧 <s 𝑦 )
27 26 ralbii ( ∀ 𝑧 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∀ 𝑤 ∈ { 𝑦 } 𝑧 <s 𝑤 ↔ ∀ 𝑧 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } 𝑧 <s 𝑦 )
28 breq1 ( 𝑥 = 𝑧 → ( 𝑥 <s 𝐴𝑧 <s 𝐴 ) )
29 28 ralrab ( ∀ 𝑧 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } 𝑧 <s 𝑦 ↔ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴𝑧 <s 𝑦 ) )
30 27 29 bitri ( ∀ 𝑧 ∈ { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∀ 𝑤 ∈ { 𝑦 } 𝑧 <s 𝑤 ↔ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴𝑧 <s 𝑦 ) )
31 23 30 sylib ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝑦 } → ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴𝑧 <s 𝑦 ) )
32 fvex ( L ‘ 𝑦 ) ∈ V
33 fvex ( R ‘ 𝑦 ) ∈ V
34 32 33 unex ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ V
35 34 a1i ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ V )
36 leftssno ( L ‘ 𝑦 ) ⊆ No
37 rightssno ( R ‘ 𝑦 ) ⊆ No
38 36 37 unssi ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ⊆ No
39 38 a1i ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ⊆ No )
40 eqidd ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) )
41 35 39 40 elons2d ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ Ons )
42 34 elpw ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ 𝒫 No ↔ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ⊆ No )
43 38 42 mpbir ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ 𝒫 No
44 nulssgt ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∈ 𝒫 No → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ )
45 43 44 mp1i ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ )
46 un0 ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) = ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) )
47 lrold ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) = ( O ‘ ( bday 𝑦 ) )
48 46 47 eqtri ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) = ( O ‘ ( bday 𝑦 ) )
49 48 imaeq2i ( bday “ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) ) = ( bday “ ( O ‘ ( bday 𝑦 ) ) )
50 simpr ( ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ∧ 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ) → 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) )
51 bdayelon ( bday 𝑦 ) ∈ On
52 oldssno ( O ‘ ( bday 𝑦 ) ) ⊆ No
53 52 sseli ( 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) → 𝑧 No )
54 53 adantl ( ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ∧ 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ) → 𝑧 No )
55 oldbday ( ( ( bday 𝑦 ) ∈ On ∧ 𝑧 No ) → ( 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ↔ ( bday 𝑧 ) ∈ ( bday 𝑦 ) ) )
56 51 54 55 sylancr ( ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ∧ 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ) → ( 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ↔ ( bday 𝑧 ) ∈ ( bday 𝑦 ) ) )
57 50 56 mpbid ( ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ∧ 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ) → ( bday 𝑧 ) ∈ ( bday 𝑦 ) )
58 57 ralrimiva ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ∀ 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ( bday 𝑧 ) ∈ ( bday 𝑦 ) )
59 bdayfun Fun bday
60 bdaydm dom bday = No
61 52 60 sseqtrri ( O ‘ ( bday 𝑦 ) ) ⊆ dom bday
62 funimass4 ( ( Fun bday ∧ ( O ‘ ( bday 𝑦 ) ) ⊆ dom bday ) → ( ( bday “ ( O ‘ ( bday 𝑦 ) ) ) ⊆ ( bday 𝑦 ) ↔ ∀ 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ( bday 𝑧 ) ∈ ( bday 𝑦 ) ) )
63 59 61 62 mp2an ( ( bday “ ( O ‘ ( bday 𝑦 ) ) ) ⊆ ( bday 𝑦 ) ↔ ∀ 𝑧 ∈ ( O ‘ ( bday 𝑦 ) ) ( bday 𝑧 ) ∈ ( bday 𝑦 ) )
64 58 63 sylibr ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( bday “ ( O ‘ ( bday 𝑦 ) ) ) ⊆ ( bday 𝑦 ) )
65 49 64 eqsstrid ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( bday “ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) ) ⊆ ( bday 𝑦 ) )
66 scutbdaybnd ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ∧ ( bday 𝑦 ) ∈ On ∧ ( bday “ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) ) ⊆ ( bday 𝑦 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday 𝑦 ) )
67 51 66 mp3an2 ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ∧ ( bday “ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∪ ∅ ) ) ⊆ ( bday 𝑦 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday 𝑦 ) )
68 45 65 67 syl2anc ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday 𝑦 ) )
69 simpr ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( bday 𝑦 ) ∈ ( bday 𝐴 ) )
70 bdayelon ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ On
71 bdayelon ( bday 𝐴 ) ∈ On
72 ontr2 ( ( ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ On ∧ ( bday 𝐴 ) ∈ On ) → ( ( ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday 𝑦 ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday 𝐴 ) ) )
73 70 71 72 mp2an ( ( ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ⊆ ( bday 𝑦 ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday 𝐴 ) )
74 68 69 73 syl2anc ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday 𝐴 ) )
75 45 scutcld ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ No )
76 oldbday ( ( ( bday 𝐴 ) ∈ On ∧ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ No ) → ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( O ‘ ( bday 𝐴 ) ) ↔ ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday 𝐴 ) ) )
77 71 75 76 sylancr ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( O ‘ ( bday 𝐴 ) ) ↔ ( bday ‘ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ∈ ( bday 𝐴 ) ) )
78 74 77 mpbird ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( O ‘ ( bday 𝐴 ) ) )
79 elons ( 𝐴 ∈ Ons ↔ ( 𝐴 No ∧ ( R ‘ 𝐴 ) = ∅ ) )
80 79 simprbi ( 𝐴 ∈ Ons → ( R ‘ 𝐴 ) = ∅ )
81 80 ad2antrr ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( R ‘ 𝐴 ) = ∅ )
82 81 uneq2d ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐴 ) ∪ ∅ ) )
83 lrold ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) = ( O ‘ ( bday 𝐴 ) )
84 un0 ( ( L ‘ 𝐴 ) ∪ ∅ ) = ( L ‘ 𝐴 )
85 82 83 84 3eqtr3g ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( O ‘ ( bday 𝐴 ) ) = ( L ‘ 𝐴 ) )
86 78 85 eleqtrd ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( L ‘ 𝐴 ) )
87 leftlt ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ ( L ‘ 𝐴 ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 )
88 86 87 syl ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 )
89 simplr ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → 𝑦 No )
90 slerflex ( 𝑦 No 𝑦 ≤s 𝑦 )
91 lrcut ( 𝑦 No → ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) = 𝑦 )
92 90 91 breqtrrd ( 𝑦 No 𝑦 ≤s ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) )
93 89 92 syl ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → 𝑦 ≤s ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) )
94 uneq2 ( ( R ‘ 𝑦 ) = ∅ → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) = ( ( L ‘ 𝑦 ) ∪ ∅ ) )
95 un0 ( ( L ‘ 𝑦 ) ∪ ∅ ) = ( L ‘ 𝑦 )
96 94 95 eqtrdi ( ( R ‘ 𝑦 ) = ∅ → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) = ( L ‘ 𝑦 ) )
97 eqcom ( ( R ‘ 𝑦 ) = ∅ ↔ ∅ = ( R ‘ 𝑦 ) )
98 97 biimpi ( ( R ‘ 𝑦 ) = ∅ → ∅ = ( R ‘ 𝑦 ) )
99 96 98 oveq12d ( ( R ‘ 𝑦 ) = ∅ → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) = ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) )
100 99 breq2d ( ( R ‘ 𝑦 ) = ∅ → ( 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ 𝑦 ≤s ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) ) )
101 93 100 imbitrrid ( ( R ‘ 𝑦 ) = ∅ → ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) )
102 simprlr ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑦 No )
103 75 adantl ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ No )
104 n0 ( ( R ‘ 𝑦 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( R ‘ 𝑦 ) )
105 breq2 ( 𝑧 = 𝑤 → ( 𝑦 ≤s 𝑧𝑦 ≤s 𝑤 ) )
106 elun2 ( 𝑤 ∈ ( R ‘ 𝑦 ) → 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) )
107 106 adantr ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑤 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) )
108 simprlr ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑦 No )
109 37 sseli ( 𝑤 ∈ ( R ‘ 𝑦 ) → 𝑤 No )
110 109 adantr ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑤 No )
111 rightgt ( 𝑤 ∈ ( R ‘ 𝑦 ) → 𝑦 <s 𝑤 )
112 111 adantr ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑦 <s 𝑤 )
113 108 110 112 sltled ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑦 ≤s 𝑤 )
114 105 107 113 rspcedvdw ( ( 𝑤 ∈ ( R ‘ 𝑦 ) ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 )
115 114 ex ( 𝑤 ∈ ( R ‘ 𝑦 ) → ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ) )
116 115 exlimiv ( ∃ 𝑤 𝑤 ∈ ( R ‘ 𝑦 ) → ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ) )
117 104 116 sylbi ( ( R ‘ 𝑦 ) ≠ ∅ → ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ) )
118 117 imp ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 )
119 118 orcd ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ( ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑦 ) 𝑤 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) )
120 lltropt ( L ‘ 𝑦 ) <<s ( R ‘ 𝑦 )
121 120 a1i ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ( L ‘ 𝑦 ) <<s ( R ‘ 𝑦 ) )
122 43 44 mp1i ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ )
123 102 91 syl ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) = 𝑦 )
124 123 eqcomd ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑦 = ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) )
125 eqidd ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) )
126 sltrec ( ( ( ( L ‘ 𝑦 ) <<s ( R ‘ 𝑦 ) ∧ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) <<s ∅ ) ∧ ( 𝑦 = ( ( L ‘ 𝑦 ) |s ( R ‘ 𝑦 ) ) ∧ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) → ( 𝑦 <s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ ( ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑦 ) 𝑤 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) )
127 121 122 124 125 126 syl22anc ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → ( 𝑦 <s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ ( ∃ 𝑧 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) 𝑦 ≤s 𝑧 ∨ ∃ 𝑤 ∈ ( R ‘ 𝑦 ) 𝑤 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) ) )
128 119 127 mpbird ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑦 <s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) )
129 102 103 128 sltled ( ( ( R ‘ 𝑦 ) ≠ ∅ ∧ ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) ) → 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) )
130 129 ex ( ( R ‘ 𝑦 ) ≠ ∅ → ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ) )
131 101 130 pm2.61ine ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) )
132 slenlt ( ( 𝑦 No ∧ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ No ) → ( 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) )
133 89 75 132 syl2anc ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ( 𝑦 ≤s ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ↔ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) )
134 131 133 mpbid ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 )
135 breq1 ( 𝑧 = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) → ( 𝑧 <s 𝐴 ↔ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 ) )
136 breq1 ( 𝑧 = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) → ( 𝑧 <s 𝑦 ↔ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) )
137 136 notbid ( 𝑧 = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) → ( ¬ 𝑧 <s 𝑦 ↔ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) )
138 135 137 anbi12d ( 𝑧 = ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) → ( ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) ↔ ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 ∧ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) ) )
139 138 rspcev ( ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) ∈ Ons ∧ ( ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝐴 ∧ ¬ ( ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |s ∅ ) <s 𝑦 ) ) → ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) )
140 41 88 134 139 syl12anc ( ( ( 𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) → ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) )
141 140 ex ( ( 𝐴 ∈ Ons𝑦 No ) → ( ( bday 𝑦 ) ∈ ( bday 𝐴 ) → ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) ) )
142 ontri1 ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝑦 ) ∈ On ) → ( ( bday 𝐴 ) ⊆ ( bday 𝑦 ) ↔ ¬ ( bday 𝑦 ) ∈ ( bday 𝐴 ) ) )
143 71 51 142 mp2an ( ( bday 𝐴 ) ⊆ ( bday 𝑦 ) ↔ ¬ ( bday 𝑦 ) ∈ ( bday 𝐴 ) )
144 143 con2bii ( ( bday 𝑦 ) ∈ ( bday 𝐴 ) ↔ ¬ ( bday 𝐴 ) ⊆ ( bday 𝑦 ) )
145 rexanali ( ∃ 𝑧 ∈ Ons ( 𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦 ) ↔ ¬ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴𝑧 <s 𝑦 ) )
146 141 144 145 3imtr3g ( ( 𝐴 ∈ Ons𝑦 No ) → ( ¬ ( bday 𝐴 ) ⊆ ( bday 𝑦 ) → ¬ ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴𝑧 <s 𝑦 ) ) )
147 146 con4d ( ( 𝐴 ∈ Ons𝑦 No ) → ( ∀ 𝑧 ∈ Ons ( 𝑧 <s 𝐴𝑧 <s 𝑦 ) → ( bday 𝐴 ) ⊆ ( bday 𝑦 ) ) )
148 31 147 syl5 ( ( 𝐴 ∈ Ons𝑦 No ) → ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝑦 } → ( bday 𝐴 ) ⊆ ( bday 𝑦 ) ) )
149 148 adantrd ( ( 𝐴 ∈ Ons𝑦 No ) → ( ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) → ( bday 𝐴 ) ⊆ ( bday 𝑦 ) ) )
150 149 ralrimiva ( 𝐴 ∈ Ons → ∀ 𝑦 No ( ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) → ( bday 𝐴 ) ⊆ ( bday 𝑦 ) ) )
151 3 8 elpwd ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∈ 𝒫 No )
152 nulssgt ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } ∈ 𝒫 No → { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s ∅ )
153 151 152 syl ( 𝐴 ∈ Ons → { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s ∅ )
154 eqscut2 ( ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s ∅ ∧ 𝐴 No ) → ( ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } |s ∅ ) = 𝐴 ↔ ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝐴 } ∧ { 𝐴 } <<s ∅ ∧ ∀ 𝑦 No ( ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) → ( bday 𝐴 ) ⊆ ( bday 𝑦 ) ) ) ) )
155 153 1 154 syl2anc ( 𝐴 ∈ Ons → ( ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } |s ∅ ) = 𝐴 ↔ ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝐴 } ∧ { 𝐴 } <<s ∅ ∧ ∀ 𝑦 No ( ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) → ( bday 𝐴 ) ⊆ ( bday 𝑦 ) ) ) ) )
156 19 22 150 155 mpbir3and ( 𝐴 ∈ Ons → ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } |s ∅ ) = 𝐴 )
157 156 eqcomd ( 𝐴 ∈ Ons𝐴 = ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } |s ∅ ) )