| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) → ( O ‘ ( bday ‘ 𝐴 ) ) = ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( O ‘ ( bday ‘ 𝐴 ) ) = ( O ‘ ( bday ‘ 𝐵 ) ) ) |
| 3 |
|
onsleft |
⊢ ( 𝐴 ∈ Ons → ( O ‘ ( bday ‘ 𝐴 ) ) = ( L ‘ 𝐴 ) ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( O ‘ ( bday ‘ 𝐴 ) ) = ( L ‘ 𝐴 ) ) |
| 5 |
|
onsleft |
⊢ ( 𝐵 ∈ Ons → ( O ‘ ( bday ‘ 𝐵 ) ) = ( L ‘ 𝐵 ) ) |
| 6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( O ‘ ( bday ‘ 𝐵 ) ) = ( L ‘ 𝐵 ) ) |
| 7 |
2 4 6
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → ( ( L ‘ 𝐴 ) |s ∅ ) = ( ( L ‘ 𝐵 ) |s ∅ ) ) |
| 9 |
|
onscutleft |
⊢ ( 𝐴 ∈ Ons → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
| 11 |
|
onscutleft |
⊢ ( 𝐵 ∈ Ons → 𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) ) |
| 13 |
8 10 12
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘ 𝐴 ) = ( bday ‘ 𝐵 ) ) → 𝐴 = 𝐵 ) |