Metamath Proof Explorer


Theorem bday11on

Description: The birthday function is one-to-one over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025)

Ref Expression
Assertion bday11on ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 fveq2 ( ( bday 𝐴 ) = ( bday 𝐵 ) → ( O ‘ ( bday 𝐴 ) ) = ( O ‘ ( bday 𝐵 ) ) )
2 1 3ad2ant3 ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( O ‘ ( bday 𝐴 ) ) = ( O ‘ ( bday 𝐵 ) ) )
3 onsleft ( 𝐴 ∈ Ons → ( O ‘ ( bday 𝐴 ) ) = ( L ‘ 𝐴 ) )
4 3 3ad2ant1 ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( O ‘ ( bday 𝐴 ) ) = ( L ‘ 𝐴 ) )
5 onsleft ( 𝐵 ∈ Ons → ( O ‘ ( bday 𝐵 ) ) = ( L ‘ 𝐵 ) )
6 5 3ad2ant2 ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( O ‘ ( bday 𝐵 ) ) = ( L ‘ 𝐵 ) )
7 2 4 6 3eqtr3d ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( L ‘ 𝐴 ) = ( L ‘ 𝐵 ) )
8 7 oveq1d ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → ( ( L ‘ 𝐴 ) |s ∅ ) = ( ( L ‘ 𝐵 ) |s ∅ ) )
9 onscutleft ( 𝐴 ∈ Ons𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) )
10 9 3ad2ant1 ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) )
11 onscutleft ( 𝐵 ∈ Ons𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) )
12 11 3ad2ant2 ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → 𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) )
13 8 10 12 3eqtr4d ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴 ) = ( bday 𝐵 ) ) → 𝐴 = 𝐵 )