| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( ( bday ` A ) = ( bday ` B ) -> ( _Old ` ( bday ` A ) ) = ( _Old ` ( bday ` B ) ) ) |
| 2 |
1
|
3ad2ant3 |
|- ( ( A e. On_s /\ B e. On_s /\ ( bday ` A ) = ( bday ` B ) ) -> ( _Old ` ( bday ` A ) ) = ( _Old ` ( bday ` B ) ) ) |
| 3 |
|
onsleft |
|- ( A e. On_s -> ( _Old ` ( bday ` A ) ) = ( _Left ` A ) ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( A e. On_s /\ B e. On_s /\ ( bday ` A ) = ( bday ` B ) ) -> ( _Old ` ( bday ` A ) ) = ( _Left ` A ) ) |
| 5 |
|
onsleft |
|- ( B e. On_s -> ( _Old ` ( bday ` B ) ) = ( _Left ` B ) ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( A e. On_s /\ B e. On_s /\ ( bday ` A ) = ( bday ` B ) ) -> ( _Old ` ( bday ` B ) ) = ( _Left ` B ) ) |
| 7 |
2 4 6
|
3eqtr3d |
|- ( ( A e. On_s /\ B e. On_s /\ ( bday ` A ) = ( bday ` B ) ) -> ( _Left ` A ) = ( _Left ` B ) ) |
| 8 |
7
|
oveq1d |
|- ( ( A e. On_s /\ B e. On_s /\ ( bday ` A ) = ( bday ` B ) ) -> ( ( _Left ` A ) |s (/) ) = ( ( _Left ` B ) |s (/) ) ) |
| 9 |
|
onscutleft |
|- ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( A e. On_s /\ B e. On_s /\ ( bday ` A ) = ( bday ` B ) ) -> A = ( ( _Left ` A ) |s (/) ) ) |
| 11 |
|
onscutleft |
|- ( B e. On_s -> B = ( ( _Left ` B ) |s (/) ) ) |
| 12 |
11
|
3ad2ant2 |
|- ( ( A e. On_s /\ B e. On_s /\ ( bday ` A ) = ( bday ` B ) ) -> B = ( ( _Left ` B ) |s (/) ) ) |
| 13 |
8 10 12
|
3eqtr4d |
|- ( ( A e. On_s /\ B e. On_s /\ ( bday ` A ) = ( bday ` B ) ) -> A = B ) |