Description: A surreal ordinal is equal to the cut of its left set and the empty set. (Contributed by Scott Fenton, 29-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onscutleft | |- ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsno | |- ( A e. On_s -> A e. No ) |
|
2 | lrcut | |- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
|
3 | 1 2 | syl | |- ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
4 | elons | |- ( A e. On_s <-> ( A e. No /\ ( _Right ` A ) = (/) ) ) |
|
5 | 4 | simprbi | |- ( A e. On_s -> ( _Right ` A ) = (/) ) |
6 | 5 | oveq2d | |- ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = ( ( _Left ` A ) |s (/) ) ) |
7 | 3 6 | eqtr3d | |- ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) ) |