Metamath Proof Explorer


Theorem onscutleft

Description: A surreal ordinal is equal to the cut of its left set and the empty set. (Contributed by Scott Fenton, 29-Mar-2025)

Ref Expression
Assertion onscutleft
|- ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) )

Proof

Step Hyp Ref Expression
1 onsno
 |-  ( A e. On_s -> A e. No )
2 lrcut
 |-  ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A )
3 1 2 syl
 |-  ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A )
4 elons
 |-  ( A e. On_s <-> ( A e. No /\ ( _Right ` A ) = (/) ) )
5 4 simprbi
 |-  ( A e. On_s -> ( _Right ` A ) = (/) )
6 5 oveq2d
 |-  ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = ( ( _Left ` A ) |s (/) ) )
7 3 6 eqtr3d
 |-  ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) )