Description: A surreal ordinal is equal to the cut of its left set and the empty set. (Contributed by Scott Fenton, 29-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onscutleft | |- ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsno | |- ( A e. On_s -> A e. No ) |
|
| 2 | lrcut | |- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
|
| 3 | 1 2 | syl | |- ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
| 4 | elons | |- ( A e. On_s <-> ( A e. No /\ ( _Right ` A ) = (/) ) ) |
|
| 5 | 4 | simprbi | |- ( A e. On_s -> ( _Right ` A ) = (/) ) |
| 6 | 5 | oveq2d | |- ( A e. On_s -> ( ( _Left ` A ) |s ( _Right ` A ) ) = ( ( _Left ` A ) |s (/) ) ) |
| 7 | 3 6 | eqtr3d | |- ( A e. On_s -> A = ( ( _Left ` A ) |s (/) ) ) |