| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|- ( ( ( A e. On_s /\ B e. No ) /\ ( bday ` B ) e. ( bday ` A ) ) -> B e. No ) |
| 2 |
|
onsno |
|- ( A e. On_s -> A e. No ) |
| 3 |
2
|
adantr |
|- ( ( A e. On_s /\ B e. No ) -> A e. No ) |
| 4 |
3
|
adantr |
|- ( ( ( A e. On_s /\ B e. No ) /\ ( bday ` B ) e. ( bday ` A ) ) -> A e. No ) |
| 5 |
|
bdayelon |
|- ( bday ` A ) e. On |
| 6 |
|
simpr |
|- ( ( A e. On_s /\ B e. No ) -> B e. No ) |
| 7 |
|
oldbday |
|- ( ( ( bday ` A ) e. On /\ B e. No ) -> ( B e. ( _Old ` ( bday ` A ) ) <-> ( bday ` B ) e. ( bday ` A ) ) ) |
| 8 |
5 6 7
|
sylancr |
|- ( ( A e. On_s /\ B e. No ) -> ( B e. ( _Old ` ( bday ` A ) ) <-> ( bday ` B ) e. ( bday ` A ) ) ) |
| 9 |
|
onsleft |
|- ( A e. On_s -> ( _Old ` ( bday ` A ) ) = ( _Left ` A ) ) |
| 10 |
9
|
eleq2d |
|- ( A e. On_s -> ( B e. ( _Old ` ( bday ` A ) ) <-> B e. ( _Left ` A ) ) ) |
| 11 |
10
|
adantr |
|- ( ( A e. On_s /\ B e. No ) -> ( B e. ( _Old ` ( bday ` A ) ) <-> B e. ( _Left ` A ) ) ) |
| 12 |
8 11
|
bitr3d |
|- ( ( A e. On_s /\ B e. No ) -> ( ( bday ` B ) e. ( bday ` A ) <-> B e. ( _Left ` A ) ) ) |
| 13 |
|
leftlt |
|- ( B e. ( _Left ` A ) -> B |
| 14 |
12 13
|
biimtrdi |
|- ( ( A e. On_s /\ B e. No ) -> ( ( bday ` B ) e. ( bday ` A ) -> B |
| 15 |
14
|
imp |
|- ( ( ( A e. On_s /\ B e. No ) /\ ( bday ` B ) e. ( bday ` A ) ) -> B |
| 16 |
1 4 15
|
sltled |
|- ( ( ( A e. On_s /\ B e. No ) /\ ( bday ` B ) e. ( bday ` A ) ) -> B <_s A ) |
| 17 |
16
|
ex |
|- ( ( A e. On_s /\ B e. No ) -> ( ( bday ` B ) e. ( bday ` A ) -> B <_s A ) ) |
| 18 |
|
leftssold |
|- ( _Left ` B ) C_ ( _Old ` ( bday ` B ) ) |
| 19 |
|
fveq2 |
|- ( ( bday ` B ) = ( bday ` A ) -> ( _Old ` ( bday ` B ) ) = ( _Old ` ( bday ` A ) ) ) |
| 20 |
19
|
3ad2ant3 |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> ( _Old ` ( bday ` B ) ) = ( _Old ` ( bday ` A ) ) ) |
| 21 |
9
|
3ad2ant1 |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> ( _Old ` ( bday ` A ) ) = ( _Left ` A ) ) |
| 22 |
20 21
|
eqtrd |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> ( _Old ` ( bday ` B ) ) = ( _Left ` A ) ) |
| 23 |
18 22
|
sseqtrid |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> ( _Left ` B ) C_ ( _Left ` A ) ) |
| 24 |
|
simp2 |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> B e. No ) |
| 25 |
2
|
3ad2ant1 |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> A e. No ) |
| 26 |
|
simp3 |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> ( bday ` B ) = ( bday ` A ) ) |
| 27 |
|
slelss |
|- ( ( B e. No /\ A e. No /\ ( bday ` B ) = ( bday ` A ) ) -> ( B <_s A <-> ( _Left ` B ) C_ ( _Left ` A ) ) ) |
| 28 |
24 25 26 27
|
syl3anc |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> ( B <_s A <-> ( _Left ` B ) C_ ( _Left ` A ) ) ) |
| 29 |
23 28
|
mpbird |
|- ( ( A e. On_s /\ B e. No /\ ( bday ` B ) = ( bday ` A ) ) -> B <_s A ) |
| 30 |
29
|
3expia |
|- ( ( A e. On_s /\ B e. No ) -> ( ( bday ` B ) = ( bday ` A ) -> B <_s A ) ) |
| 31 |
17 30
|
jaod |
|- ( ( A e. On_s /\ B e. No ) -> ( ( ( bday ` B ) e. ( bday ` A ) \/ ( bday ` B ) = ( bday ` A ) ) -> B <_s A ) ) |
| 32 |
|
bdayelon |
|- ( bday ` B ) e. On |
| 33 |
32 5
|
onsseli |
|- ( ( bday ` B ) C_ ( bday ` A ) <-> ( ( bday ` B ) e. ( bday ` A ) \/ ( bday ` B ) = ( bday ` A ) ) ) |
| 34 |
|
ontri1 |
|- ( ( ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` B ) C_ ( bday ` A ) <-> -. ( bday ` A ) e. ( bday ` B ) ) ) |
| 35 |
32 5 34
|
mp2an |
|- ( ( bday ` B ) C_ ( bday ` A ) <-> -. ( bday ` A ) e. ( bday ` B ) ) |
| 36 |
33 35
|
bitr3i |
|- ( ( ( bday ` B ) e. ( bday ` A ) \/ ( bday ` B ) = ( bday ` A ) ) <-> -. ( bday ` A ) e. ( bday ` B ) ) |
| 37 |
36
|
a1i |
|- ( ( A e. On_s /\ B e. No ) -> ( ( ( bday ` B ) e. ( bday ` A ) \/ ( bday ` B ) = ( bday ` A ) ) <-> -. ( bday ` A ) e. ( bday ` B ) ) ) |
| 38 |
|
slenlt |
|- ( ( B e. No /\ A e. No ) -> ( B <_s A <-> -. A |
| 39 |
6 3 38
|
syl2anc |
|- ( ( A e. On_s /\ B e. No ) -> ( B <_s A <-> -. A |
| 40 |
31 37 39
|
3imtr3d |
|- ( ( A e. On_s /\ B e. No ) -> ( -. ( bday ` A ) e. ( bday ` B ) -> -. A |
| 41 |
40
|
con4d |
|- ( ( A e. On_s /\ B e. No ) -> ( A ( bday ` A ) e. ( bday ` B ) ) ) |
| 42 |
41
|
3impia |
|- ( ( A e. On_s /\ B e. No /\ A ( bday ` A ) e. ( bday ` B ) ) |