Description: Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | on.1 | |- A e. On  | 
					|
| on.2 | |- B e. On  | 
					||
| Assertion | onsseli | |- ( A C_ B <-> ( A e. B \/ A = B ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | on.1 | |- A e. On  | 
						|
| 2 | on.2 | |- B e. On  | 
						|
| 3 | onsseleq | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) )  | 
						|
| 4 | 1 2 3 | mp2an | |- ( A C_ B <-> ( A e. B \/ A = B ) )  |