Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | on.1 | |- A e. On |
|
| on.2 | |- B e. On |
||
| Assertion | onun2i | |- ( A u. B ) e. On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | |- A e. On |
|
| 2 | on.2 | |- B e. On |
|
| 3 | onun2 | |- ( ( A e. On /\ B e. On ) -> ( A u. B ) e. On ) |
|
| 4 | 1 2 3 | mp2an | |- ( A u. B ) e. On |